

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Emulation of SystemC Applications for Portable FPGA Binaries

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Scott Spencer Sirowy

June 2010

Dissertation Committee:

 Dr. Frank Vahid, Chairperson

 Dr. Tony Givargis

 Dr. Sheldon X.-D. Tan

Copyright by
Scott Spencer Sirowy

2010

The Dissertation of Scott Spencer Sirowy is approved:

 Committee Chairperson

University of California, Riverside

iv

ABSTRACT OF THE DISSERTATION

Emulation of SystemC Applications for Portable FPGA Binaries

by

Scott Spencer Sirowy

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2010

Dr. Frank Vahid, Chairperson

As FPGAs become more common in mainstream general-purpose computing

platforms, capturing and distributing high-performance implementations of applications

on FPGAs will become increasingly important. Even in the presence of C-based synthesis

tools for FPGAs, designers continue to implement applications as circuits, due in large

part to allow for capture of clever spatial, circuit-level implementation features leading to

superior performance and efficiency. We demonstrate the feasibility of a spatial form of

FPGA application capture that offers portability advantages for FPGA applications

unseen with current FPGA binary formats. We demonstrate the portability of such a

distribution by developing a fast on-chip emulation framework that performs transparent

optimizations, allowing spatially-captured FPGA applications to immediately run on

FPGA platforms without costly and hard-to-use synthesis/mapping tool flows, and

sometimes faster than PC-based execution. We develop several dynamic and transparent

optimization techniques, including just-in-time compilation, bytecode acceleration, and

just-in-time synthesis that take advantage of a platform’s available resources, resulting in

v

orders of magnitude performance improvement over normal emulation techniques and

PC-based execution.

vi

Table of Contents

Chapter 1... 1
Chapter 2... 11

2.1 Overview... 11
2.2 C is for Circuits... 11

2.2.1 Overview... 11
2.2.2 A Motivating Example – Sorting.. 15
2.2.3 Study Methodology... 16
2.2.4 Example – Gaussian Noise Generator .. 21
2.2.5 Example – Molecular Dynamics Simulator.. 27
2.2.6 Example - Cellular Learning Automata-Based Evolutionary Computing 29
2.2.7 More Experiments... 31

2.3 Other Related Work .. 37
2.3.1 C-based Synthesis Tools ... 37
2.3.2 Parallel Languages .. 38
2.3.3 Portability.. 38

2.4 Requirements of a Language for Spatial Capture ... 39
2.4.1 POSIX... 41
2.4.2 Other Thread-Based Approaches.. 43
2.4.3 SystemC .. 44

Chapter 3... 47
3.1 Overview... 47
3.2 Related Work .. 50
3.3 SystemC-on-a-Chip Components ... 51

3.3.1 SystemC Bytecode Compiler.. 51
3.3.2 SystemC Bytecode Format ... 53
3.3.3 USB Download Interface..57
3.3.4 SystemC Emulation Engine .. 58

3.4 Experiments .. 61
Chapter 4... 65

4.1 Overview... 65
4.2 Related Work .. 68
4.3 Online SystemC Emulation Architecture.. 70

4.3.1 Base Architecture with Acceleration Engines .. 70
4.3.2 Kernel Bypass ... 72

4.4 Online Acceleration Assignment .. 73
4.4.1 Problem Definition.. 73
4.4.2 Communication Overhead .. 76

4.5 Online Heuristics .. 76
4.5.1 Upper and Lower Bounds ... 76

vii

4.5.2 Accelerator Static Assignment.. 77
4.5.3 Greedy Heuristic ... 77
4.5.4 Aggregate Gain ... 78

4.6 Experiments .. 79
4.6.1 Framework .. 79
4.6.2 Evaluation ... 81

Chapter 5... 84
5.1 Overview... 84
5.2 Related Work .. 86
5.3 Experimental Setup... 87
5.4 Just-in-Time Compilation of SystemC ... 89

5.4.1 Compilation... 89
5.4.2 JIT Compilation with Dedicated JIT Memory Resources 91
5.4.3 Emulation Memory Controller.. 94

Chapter 6... 98
6.1 Overview... 98
6.2 Related Work .. 99
6.3 Just-in-Time Synthesis.. 101

6.3.1 Server-Side Synthesis Framework.. 101
6.3.2 Decompilation and Synthesis.. 104
6.3.3 SystemC-on-a-Chip Architectural Support... 105

6.4 Experiments .. 108
Chapter 7... 111

7.1 Overview... 111
7.2 SystemC for Synchronized Physiological Models.. 115
7.3 Related Work .. 118
7.4 Time-Controllable Digital Mockup Execution ... 119
7.5 Experiments .. 121

Chapter 8... 126
8.1 Overview... 126
8.2 Related Work .. 127
8.3 SystemC-on-a-Chip Software ... 129

8.3.1 Using the SystemC Bytecode Compiler ... 129
8.3.2 Downloading SystemC to Development Platform.................................. 131

8.4 Spatial and Time-Oriented Programming... 132
8.4.1 Course Plan ... 132
8.4.2 Sample Labs.. 133

Chapter 9... 134
9.1 Summary... 134
9.2 Remaining Challenges .. 137

viii

List of Figures

Figure 1: FPGAs enable parallel computation. (a) A multiply-accumulate computation,

requiring perhaps 30-100 clock cycles on a microprocessor (b) but just 1 or 2 clock

cycles on an FPGA.. 2

Figure 2: Although temporally-oriented algorithms in C can be synthesized to a variety

of circuits trading off size and performance, many clever circuits representing spatially-

oriented algorithms are not reasonably derivable from temporally-oriented algorithms. 12

Figure 3: C is for circuits: Some circuits might still be captured in a form of C code that

is synthesizable back to the original circuit; such C code would provide tremendous

portability advantages over other circuit representations ... 16

Figure 4: Study methodology. We modeled each circuit in C (when possible). We then

performed the following transformations and optimizations in the order shown,

representing a “standard” synthesis tool, and observed whether the original circuit was

recovered... 19

Figure 5: Circuit for a Gaussian noise generator. ... 22

Figure 6: Spatial C code for Gaussian noise generator... 23

Figure 7: Control/data flow graph for C-level Gaussian noise generator functions (a)

main, (b) doStage1, (c) doStage2, (d) doStage3, and (e) doStage4. 24

ix

Figure 8: Datapaths after scheduling, resource allocation, and binding for (a) doStage1,

(b) doStage2, (c) doStage3, (d) doStage3, (e) main before pipelining, and (f) main after

pipelining. Note the similarity with Figure 5.. 25

Figure 9: Molecular dynamics accelerator. (a) Code for calculating nonbonded forces. (b)

Custom circuit utilizing a divided pipeline to reduce latency penalty. (c) The synthesized

pipeline differs from the custom circuit by utilizing a single pipeline. The synthesized

circuit must stall due to a single memory, reducing throughput....................................... 27

Figure 10: The proposed custom CLA-EC circuit consisting of a ring of (a) custom CLA-

EC cells and (b) C pseudocode that synthesizes to an almost identical parallel circuit

(code for cell internals is omitted). ... 30

Figure 11: 82% of the studied circuits published in FCCM were re-derivable from C,

meaning they could be captured in some form of C such that a synthesis tool could be

expected to synthesize the same or similar custom design. .. 32

Figure 12: Comparison of original custom circuits versus circuits synthesized from

derived sequential code representations: (a) Normalized xecution time and (b)

Normalized area (slices) Both metrics are normalized to values for the original custom

circuit. ... 35

Figure 13: Pipelined Binary Tree [94]. Each level operates concurrently, taking the

pattern and address information from the previous level, and passing information to the

next level. Such a design cannot readily be captured in a sequential language, and

requires explicit parallel constructs to capture for portable distribution 40

x

Figure 14: Snippet of POSIX-based implementation of one level of the pipelined binary

tree and how levels are connected and how they communicate. 42

Figure 15: Snippet of SystemC implementation of a level of the pipelined binary tree and

how multiple levels are connected.. 45

Figure 16: SystemC-on-a-Chip allows a designer to emulate SystemC descriptions on

various supported development platforms. Emulation enables early prototyping and

interaction with real peripherals and I/O, while reducing the need for advanced

compilation and synthesis. .. 48

Figure 17: SystemC bytecode compiler: (a) The SystemC bytecode compiler builds on

PINAPA, a SystemC front-end tool, and uses a custom SystemC bytecode backend; (b)

Sample code generation during the first phase of the SystemC bytecode back end......... 52

Figure 18: SystemC bytecode format. Each process is described by a number of MIPS-

like instructions, with additional instructions added for SystemC specifics, like reading

signals, extracting bit ranges, etc. ... 55

Figure 19: USB interface. The user copies SystemC bytecode to a USB flash drive, plugs

the drive into a platform and pushes a button—the platform then begins emulating the

SystemC description. .. 56

Figure 20: Basic emulation engine. The emulation engine consists of a hybrid event-

driven kernel to allow a variety of different circuit implementations. Circuits can also

take advantage of a range of standard peripherals, including lights, buttons, a UART, and

input and output memories.. 59

xi

Figure 21: SystemC-on-a-Chip circuit interface. The emulation engine supports access to

multiple peripherals, including buttons, LEDs, and memory. .. 60

Figure 22: SystemC-on-a-Chip prototypes. Each system differed in size, processor,

memory, and number of emulation accelerators, but each could run the same SystemC

bytecode for a given SystemC description.. 61

Figure 23: SystemC experiments. (a) SystemC code for Image Edge Detection. The code

took only minutes to create and compile before being put on a Virtex4. (b) Edge

Detection running on a Virtex4. We connected the memory output to a frame buffer to

see the results on a VGA screen. .. 62

Figure 24: Emulation accelerators. The emulation accelerator consists of a multicycle

MIPs-like datapath than can execute one instruction in about 3-4 cycles, almost 100X

faster than executing the same instructions in the base emulator. 66

Figure 25: SystemC in-system emulation: (a) In-system emulation of a description

allows testing with real I/O, thus creating dynamic test bench input vectors that cannot be

analyzed statically. (b) Sample image processing system that invokes several different

filters depending on the input. (c) Statically mapping each process to either software or

an acceleration engine results in widely varied runtimes for different input sequences. (d)

Dynamically mapping SystemC processes in response to the input sequence results in

higher performance emulation for all input sequences. .. 67

Figure 26: SystemC emulation platform. A limitation of the SystemC emulation platform

is that the acceleration engines and the SystemC kernel within the emulation platform are

connected via a single bus structure, thereby creating a bottleneck for shared memory

xii

usage when multiple processes (p1, p2, p3) are scheduled in parallel, hindering

performance. ... 70

Figure 27: SystemC acceleration engines: (a) Internal structure. (b) Direct connection of

two SystemC acceleration engines using a kernel bypass connection. In some situations,

bypassing the bus and SystemC kernel can lead to significant performance benefits for a

given SystemC description. .. 71

Figure 28: Emulation runtime results of image filtering, lung, and radiosity examples

emulated on two different emulation platforms. AG performs up to 9x faster than

software-only emulation, and 5x faster than a statically preloaded approach. 80

Figure 29: Emulation runtimes without and with kernel bypass using the AG heuristic on

the image processing examples. Kernel-bypass-enabled emulations performed on average

11% better than without kernel bypass, and up to 20% in some examples. 82

Figure 30: While the performance of the base SystemC emulation engine is acceptable

for some applications, for others it is not (a). Just-in-time compiling the SystemC

bytecode to the emulator’s memory improves performance (b), but can be made to be

competitive with custom implementations if the emulation engine is made JIT aware (c).

... 85

Figure 31: The JIT/architecture codesign process. ... 86

Figure 32: Experimental Prototypes. (a) The Virtex5 vlx110t implementation connected

to a large screen buffer for testing image processing applications. (b) A summary of each

experimental system. Each version was built with and without dedicated hardware to

improve the impact of just-in-time compilation of the SystemC bytecode. 88

xiii

Figure 33: Results of our initial profiling of the SystemC bytecode emulator................. 89

Figure 34: Modifications to the SystemC emulation engine that increase the utility of

just-in-time compilation. The new SystemC emulation engine supports a local memory

bus with a dedicated JIT memory and a static signal queue for fast access to commonly

executed software operations (a). The new SystemC emulation engine also has a

dedicated emulation memory controller, which offloads costly memory updates from

software, and magnifies the impact of just-in-time compilation 91

Figure 35: JIT compilation with dedicated JIT resources performed 4X faster than the

base SystemC emulation platform, yet still fell short of native software implementations

by another 10X.. 93

Figure 36: JIT Compilation with JIT Aware Resources speeds execution by 10X

compared to base emulation, and by 2.5X compared to JIT compilation without the same

resources. .. 96

Figure 37: Just-in-Time Synthesis of SystemC applications leads to natively executing

applications that can run orders of magnitude faster than baseline simulation and several

times faster than PC simulation. ... 99

Figure 38: Just-in-Time Synthesis SystemC-on-a-Chip framework. (a) The server

responds to requests from SystemC-on-a-Chip platforms that require native execution

speeds. (b) The server decompiles the SystemC bytecode, recovers the high-level

information, and synthesizes a circuit tuned to that platform’s available resources. 103

xiv

Figure 39: Just-in-Time Synthesis Architectural Support. The partially-reconfigurable

region multiplexes the use of the input and output, and can override the execution of the

emulator once programmed. ... 106

Figure 40: Speedups compared to base SystemC emulation for some common image

processing filters. Factoring out the time required to synthesize the SystemC application,

just-in-time synthesis is almost 14,000X faster than base emulation, and 30X faster than

PC simulation.. 109

Figure 41: Approaches to integrating an embedded device with the physical environment

during design: (a) system model, (b) physical mockup, (c) digital mockup................... 112

Figure 42: Digital mock-up platform: (a) The bypass method of integration taps directly

into the digital information packets that indicate the data/control values to/from the

device sensors/actuators, (b) the method matches hardware-in-the-loop approaches used

in industrial practice (figure courtesy of Boeing, 2009). .. 114

Figure 43: Capturing physiological models in SystemC. (a) Portion of a mathematical

model of the human lung. (b) Description of the model in SystemC. (c) Description using

POSIX threads. The POSIX threads approach requires implementing explicit lock-

stepping mechanisms that detract from the model’s readability..................................... 116

Figure 44: Time-Controllable Debugging. In contrast to traditional instruction

granularity debugging, time granularity debugging allows a developer to monitor system

variables by explicitly controlling simulated time.. 121

Figure 45: SystemC Implementation of a two-compartment respiratory system digital

mockup.. 123

xv

Figure 46: SystemC Digital Mockup Implementation Summary. Both respiration models

were obtained from the NSR Physiome Project and manually converted to concurrently

executing SystemC implementations.. 124

Figure 47: Medical device(ventilator) and digital mockup(lung) prototype setup. (a)The

digital mockup can be time-controlled using a simple PC-based debug interface. (b)The

digital mockup and ventilator communicating digitally. ..125

Figure 48: SystemC-on-a-Chip in the classroom... 126

Figure 49: Windows-based interface for programming SystemC-on-a-Chip................ 129

Figure 50: Remote Compilation for SystemC-on-a-Chip.. 130

Figure 51: Time Oriented and Spatial Programming with SystemC. We have developed a

complete set of labs and materials to complement a course in spatial and time-oriented

programming... 132

1

Chapter 1

Introduction

FPGAs (field-programmable gate arrays) support a new form of software whose order of

magnitude speedups can enable a class of new high-performance embedded applications

not otherwise feasible. However, unlike microprocessor software, two problems severely

limit FPGA adoption, and thus prevent the appearance of a range of useful embedded

applications. The first problem is that of a highly specialized design process for FPGAs

that differs greatly from microprocessor software design, a problem that has been

intensively studied by researchers and for which commercial solutions are beginning to

appear. The second problem is that FPGA binaries are presently intricately coupled with

specific FPGA devices, and cannot be ported across devices or migrated to newer device

versions the way that microprocessor binaries can.

FPGAs implement circuits, characterized through their spatial connectivity:

component A is connected to B, which is connected to C, etc. Each component computes

2

in parallel with all the other components, of which there may be thousands. In contrast,

microprocessors implement sequential programs, characterized by their serial ordering of

computations as a sequence of instructions. It is the parallelism, from the task level down

to the bit level, that contributes to FPGAs executing certain computations orders of

magnitude faster than microprocessors.

Figure 1 illustrates a computation involving 10 multiplications and additions,

which might require 30 to 100 clock cycles to execute on a microprocessor, but could

execute in just 1 or 2 clock cycles on an FPGA if enough resources existed. Many

embedded system applications are especially amenable to computation speedup from

FPGAs. For example, an image processing application may search a camera-provided

image for specific objects, such as a tank, a person, or even a specific person’s face.

Algorithms for such applications may identically search local image portions and then

hierarchically compose results – those local search tasks are typically highly-

parallelizable, and hence image processing algorithms may execute hundreds of times

Figure 1: FPGAs enable parallel computation. (a) A multiply-accumulate computation, requiring perhaps 30-100 clock
cycles on a microprocessor (b) but just 1 or 2 clock cycles on an FPGA.

for i in 0 to 9 loop
 a = a + c[i]*M[i]
end loop;

(a)

(b)

M0 M1 M9

…

c0 c1 c9

a

* * *

+ +

+

3

faster on an FPGA than on a microprocessor. Likewise, highly parallelizable subtasks

exist in other common embedded applications that involve processing streams of video,

audio, speech, and other data. Sample domains include television set-top boxes, security

cameras, medical imaging and diagnosis equipment, contraband detection systems at

locations like airports or borders, fingerprint recognition, speech understanding, and a

wide range of military applications. Extensive previous work has shown the speedup

advantages of FPGA, typically 10x to 100x, for a wide range of embedded applications

[REFS]. Such order-of-magnitude speedups may not just be a change in speed, but rather

a “change in kind,” as von Neumann originally described the impact of computers over

existing desktop calculators, enabling applications not before possible (i.e., the

applications enabled by a computer’s speed far exceed categorization as that of merely a

fast desktop calculator).

One recognized problem preventing FPGA adoption is the different, and more

complex, design flow for FPGAs compared to that for microprocessors. The typical

design flow requires FPGA users to describe the desired circuit in a hardware description

language (HDL), such as VHDL or Verilog, and to use special FPGA-vendor-provided

compilers (known as synthesis tools) that convert HDL descriptions to device-specific

FPGA binaries. In contrast, microprocessor users utilize “standard” programming

languages like C, C++, or Java, and utilize robust high-quality compilers and integrated

development environments (IDEs) typically developed by third-party vendors who often

specialize in such tools. The massive microprocessor hardware, applications, and tools

industries, whose importance need not be stated, have been strongly catalyzed by the

4

separation of architecture from function enabled by the concept of microprocessor

instruction sets, enabling a standard microprocessor binary. A standard microprocessor

binary is a binary written using instructions of an instruction set, such as an x86 or ARM

processor instruction set, that can execute on a variety of existing and evolving versions

of a microprocessor, leading to benefits and innovations in the creation of architectures,

tools, and applications.

Today, software for FPGAs does not benefit from the standard binary concept.

Instead, software is compiled by FPGA-vendor-provided tools (typically for free as a

means of selling hardware devices), into a proprietary binary that is intricately bound to a

specific device. A vendor may offer dozens or hundreds of different devices – Xilinx for

example presently supports approximately 100 devices. A binary created for one device

cannot run on any other device. The situation hampers development of architecture,

software, and tools, and thus the widespread use of FPGAs for embedded computing

platforms.

It’s natural to ask why industry has not already developed a standard binary

concept, if the concept would be so useful. In fact, we do believe that such a concept

would eventually begin to evolve over the coming 10-20 year period, with small

bitstream portability techniques accumulating into something akin to a standard binary.

The lack of portable binaries is becoming recognized as a problem hampering FPGA

adoption. For example, an FPGA panel at Supercomputing 2005 noted: “Most

applications outlive the hardware. If one is going to invest in an [FPGA] accelerator,

what are the options when the accelerator is obsolete? It’s a very real issue” [110].

5

Extensive discussions regularly appear in the newsgroup comp.arch.fpga, and designers

have organized to try to make FPGA internal architectures more open (e.g., [109]).

A standard binary concept for FPGAs will certainly incur performance and size

overhead compared to the current desktop FPGA CAD approach. Yet, a standard binary

concept for FPGAs may catalyze the FPGA hardware, applications, and tools industries,

similar to how it catalyzes the microprocessor domain, thus compensating for the

incurred overhead. Furthermore, a standard binary for FPGAs that seamlessly integrates

with that for microprocessors, may catalyze incorporation of FPGAs into the massive

established microprocessor industry, whose hardware and software revenues and number

of application developers tower over those for FPGAs by two orders of magnitude. The

net result would be the widespread use of FPGAs, especially in embedded systems,

whose applications are particularly amenable to FPGA speedup, and hence the

appearance of high-performance embedded applications that would otherwise not be

developed due to the difficulty of utilizing FPGAs.

We envision opportunities for a portable FPGA distribution format that rides on

the success of the “write once, run everywhere” programming paradigm of interpreted

languages like Java and C#, wherein a designer captures a design in a high level

language, and any computing platform that supports a virtual machine for that language

can execute that application. At the expense of initial performance, virtual machine

technology (like Java’s JVM) enables great portability, and is promising as the

foundation for a portable FPGA binary. We introduce tools and techniques for an

6

emulation framework that allows for portable FPGA binary execution which we call

SystemC-on-a-Chip.

This dissertation can logically be broken into three distinct sections. The first

section only includes Chapter 2, and investigates spatial programming and the proper

programming constructs and requirements to facilitate a standard FPGA distribution

format, and the reasons for choosing SystemC as a possible distribution language. The

second section comprises Chapters 3, 4, 5, and 6, and describes tools, frameworks, and

experiments to enable the emulation of applications developed in SystemC. Finally, the

last section, comprising Chapters 7 and 8, investigate additional uses of the SystemC-on-

a-Chip framework.

 In Chapter 2, we present an investigation into the proper constructs and

languages required to facilitate a portable distribution format for FPGA-based

applications. We present a study entitled “C is for Circuits” that closely studied 70

custom-created, clever circuits and attempted to capture those circuits in a sequential

language such that a standard C-to-gates synthesis tool could recreate the original custom

circuit. Our study complements the question asked by many researchers on whether

sequential code (like C) can be analyzed and translated into a high performance circuit.

Our study showed that while many custom-created circuits could actually be captured

using a sequential language, others could not readily be translated and relied on explicit

parallel concepts. Of those that could be translated to a sequential language, many

required a radical algorithm change to facilitate synthesis. We thus determined that a

portable distribution format would require both temporal and spatial constructs. We then

7

investigate the requirements of a language suitable for spatial capture of FPGA

applications. We investigate the feasibility of using popular parallel programming

frameworks like POSIX, MPI, and RTOS’s, but conclude that the SystemC language best

captures the temporal and spatial concepts required of a standard FPGA distribution

format.

In Chapter 3, we introduce SystemC-on-a-Chip, a framework that allows a

designer to capture applications in SystemC and have them immediately run on any

platform that supports the SystemC emulation engine. We introduce the newly developed

SystemC bytecode (analogous to Java bytecode), a lean intermediate representation of the

SystemC application that preserves both the temporal and spatial features of the

application. The SystemC bytecode facilitates a portable representation of the SystemC

application that can run any platform assuming SystemC bytecode support. The SystemC

bytecode is supported by the SystemC Emulation Engine. The SystemC emulation engine

can run on any development platform that supports a basic interface of a number of

different peripherals, memories, and internal components. The SystemC emulation

engine’s core is a SystemC emulation kernel. The SystemC emulation kernel consists of a

lean event-driven kernel, a virtual machine to execute the SystemC bytecode instructions,

and hooks and access to the development platform’s peripheral set. We demonstrate the

usefulness of the SystemC-on-a-Chip framework by developing several complete

SystemC-on-a-Chip platforms, highlighting that writing SystemC applications follows

the same “Write once, run anywhere” programming paradigm made popular by

interpreted languages like Java and C#.

8

In Chapter 4, we show that for the common case where the SystemC-on-a-Chip is

running on an FPGA, we can achieve substantial speedup over a baseline emulation

engine by intelligently taking advantage of available FPGA resources. We introduce

SystemC bytecode accelerators, special coprocessors that can execute the SystemC

bytecode natively. SystemC bytecode accelerators are implemented using available

FPGA resources, and can be numerous, allowing a SystemC application to effectively to

run in parallel (compared to being a parallel simulation). The SystemC bytecode

accelerators can improve SystemC emulation execution by approximately 2X. We further

demonstrate that the SystemC emulation engine can make intelligent choices about how

best to effectively utilize the SystemC bytecode accelerators. We define the Online

Emulation Acceleration problem and demonstrate that we can achieve 20x improvement

over the baseline SystemC emulation engine. With extra available FPGA resources, we

also show that we can create custom interconnects among the SystemC bytecode

accelerators. Such custom interconnects can effectively bypass the SystemC emulation

kernel, and result in additional performance improvement.

Unfortunately not all platforms benefit from the resources required to instantiate

multiple SystemC bytecode accelerators. In Chapter 5, we address this issue a software-

based improvements that just-in-time compile the SystemC bytecode to the native

processor upon which the SystemC emulation engine is running. Using minimal

resources, we modify the SystemC-on-a-Chip framework to be JIT Aware, allowing the

just-in-time compiled code to execute from resident small, fast memories. Our JIT

Aware framework includes a JIT Aware Memory, and custom logic for maintaining

9

emulation signal and event queues. Such modifications result in speedups of

approximately 10X compared to a baseline emulation engine, and at near comparable

speeds to the same application developed for the native platform.

In Chapter 6, we demonstrate just-in-time synthesis of SystemC applications

running on the SystemC-on-a-Chip framework. Just-in-time synthesis is a transparent

process(to the SystemC application designer and to the SystemC emulation engine) that

synthesizes, place and routes, and maps the original SystemC application to a native

implementation that fully takes advantage of the platform’s available resources. Just-in-

time synthesis of SystemC application results in orders of magnitude speedup of SystemC

applications compared to executing natively on the SystemC emulation engine, and

several times faster than simulating the SystemC application on a desktop PC.

In Chapter 7, we describe the utility of using the SystemC-on-a-Chip framework

for digital physiological model development. We demonstrate time-controllable debug

features, allowing a physiological model designer to debug using the concept of time.

This is contrast to traditional debug approaches that require debugging at the instruction

level. While instruction level debugging makes sense for traditional sequential programs,

time-level debugging provides powerful mechanisms to the digital physiological model

designer not possible with more traditional approaches.

In Chapter 8, we demonstrate tools and materials useful for teaching a course on

spatial programming with SystemC. We develop a freely available Windows-based

framework to compile, connect, and download SystemC descriptions to popular teaching

10

development platforms. We also present possible course materials, including web

materials, and course lessons.

We demonstrate the feasibility of using SystemC as a portable distribution

language for FPGA applications. We demonstrate the portability of such a portable

distribution by developing a fast SystemC emulation framework that transparently

optimizes the SystemC application, allowing SystemC applications to immediately run

without costly and hard-to-use synthesis/mapping tool flows.

11

Chapter 2

Spatial Algorithms

2.1 Overview

As FPGAs become more common in mainstream general-purpose computing platforms,

distributing high-performance implementations of applications on FPGAs will become

increasingly important. We present a study entitled C is for Circuits that shows that while

many manually created circuits can be captured in a sequential language like C for

portability purposes, often those implementations would still benefit from explicit

parallel concepts. We then investigate the requirements for a language for spatial capture

of FPGA applications, and conclude that SystemC satisfies such requirements.

2.2 C is for Circuits

2.2.1 Overview

It is now well-established that many sequential algorithms captured in a language like C

can be synthesized to exceptionally fast circuits on field-programmable gates arrays.

Numerous FPGA synthesis tools exist [39][49][57][104], with commercial offerings

12

beginning to appear [24][25][76], and commercial computing platforms increasingly

supporting FPGAs [77][119]. Capturing algorithms in C code (or a similar sequential

language, which for simplicity we’ll refer to as C code henceforth) provides tremendous

portability advantages, as code can be compiled to a microprocessor, or synthesized

entirely or partially to FPGAs available on a computing platform. Yet, designers still

often conceptualize and capture applications as circuit designs, rather than as C code.

While this situation is partly explained by the relatively nascent state of FPGA

compilation tools, a significant contributor is also the radically different computation

model provided by C than by circuits. The sequential instruction model of C is oriented to

time-ordered execution of instructions, while circuits are oriented to spatial connectivity

of concurrently-executing components.

In contrast to the advent of compilers causing assembly coding to be almost

entirely replaced by C coding, where both coding styles were temporally oriented, the

Figure 2: Although temporally-oriented algorithms in C can be synthesized to a variety of circuits trading off size and
performance, many clever circuits representing spatially-oriented algorithms are not reasonably derivable from

temporally-oriented algorithms.

quicksort(array, left, right)
{
 // quicksort C code

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

. . . .

Synthesis

13

sharp distinction between temporal and spatial models likely means that spatial models

will persist in some form despite continued maturation of C-based FPGA synthesis.

Spatial models, such as circuits, possess tremendous degrees of design freedom. Much

human ingenuity often underlies the design of both custom circuits and what are known

as “hardware algorithms,” which often look radically different from sequential code

algorithms designed to solve the same problem. (Because “hardware algorithms” is a

misnomer in the era of FPGAs, which implement circuits as software, we use the term

“circuit-based algorithms”). Figure 2 shows that while a standard synthesis tool might be

able to generate a number of different circuits based on the temporally-oriented Quicksort

algorithm, no amount of transformations would be likely to discover a systolic array

circuit implementation for fast sorting.

Although circuits represent an important application capture method, capturing

applications as circuits suffers from limited portability. A circuit, captured at the netlist

level or even at the register-transfer level, cannot readily be adapted to FPGAs differing

in their capacities or hard core resources, nor be compiled to execute on a

microprocessor. Improved portability could increase the present usefulness of an

application across platforms, while also increasing its longevity. In contrast to a circuit,

an algorithm captured in C code has much portability. C code can be synthesized to

FPGAs of differing capacities and hard core resources, through transformations like loop

unrolling and through scheduling, allocation, binding, and technology mapping. C code

can even be partitioned among a microprocessor and FPGA, or run on a microprocessor

(or several microprocessors) without any FPGAs at all.

14

We therefore asked the following question:

To what extent can human-designed circuit implementations of an application

be captured in a form of C code that can be expected to be synthesized back to

the same human-designed circuit?

Note that this question has a subtle but critical difference from most past research that

instead seeks to convert an existing sequential algorithm to a circuit

[39][43][49][64][104][126][129] – research that clearly has much utility. To the best of

our knowledge, the above question has not been directly addressed by the codesign or

synthesis communities.

Several previous works are related to the question. Stitt [130] provides guidelines

for C coders to yield improved circuits. Haubelt [63] formally analyzes a high-level

description’s flexibility, meaning the extent to which the description can be synthesized

to a wide variety of circuits.

Other works are also related. Work on reverse engineering of circuits [40][59] has

focused on obtaining low-level behavioral models, like Boolean equations or finite-state

machines, for retargeting to different silicon technologies. Those works are not intended

for targeting microprocessors. Early hardware/software partitioning work moved non-

critical circuit functionality from circuits to microprocessor code [58]. SystemC [46],

involving libraries and macros added to C++, allows for temporal and spatial concepts to

be captured in a single C++ description.

Of course, circuit designers who use synthesis tools regularly use knowledge of

synthesis techniques when writing behavioral (e.g., register-transfer-level) descriptions,

15

such as writing a for loop that can easily be unrolled. Likewise, parallel architecture

programmers write simpler code (e.g., loops) they know compilers will transform to

parallel code. The question we seek to answer takes circuit techniques to a higher level,

and differs from parallel programming techniques in the finer granularity of parallelism

offered by FPGAs compared to more standard parallel architectures.

None of the above works explicitly addresses whether existing circuits can be

captured in a temporal language. Answering this question is relevant to the FPGA and

codesign communities, to determine the extent to which C code can be used to distribute

circuit-based algorithms to different compute platforms – algorithms that today are

commonly captured and distributed as circuit or register-transfer-level designs.

2.2.2 A Motivating Example – Sorting

There are numerous factors a designer must consider when implementing a sorting

algorithm, including data set size, data ordering, and now more recently, the platform on

which the algorithm will run.

A software designer targeting a microprocessor platform might use a classic

temporal sorting algorithm, such as Quicksort[69], which recursively divides the data into

sets greater than and less than a selected pivot. In contrast, a designer targeting an FPGA

might approach the problem differently, instead relying on spatial constructs to capture

the notion of sorting. The designer might use a systolic Mergesort [154] or Bitonic sort

[17], representing highly-parallel, pipelined sorting methods, which cannot reasonably be

expected to be derived from a Quicksort algorithm by any FPGA compiler (Figure 2).

16

Those methods are radically different than the temporal Quicksort algorithm, even though

they accomplish the same task.

Unfortunately, a systolic Mergesort circuit representation is typically not portable,

often distributed as a bitstream or at best, some form of netlist. The lack of portability

forces distributors to design not only different circuits for different data set sizes, but also

for different FPGA sizes and families, which could easily number in the hundreds. Figure

3 illustrates the portability benefits of capturing circuits as C code, showing that if we can

capture the systolic Mergesort circuit in some form of C code that could be synthesized to

the original circuit, we would have a more robust distribution format, capable of being

run on a wide range of platforms.

2.2.3 Study Methodology

Figure 3: C is for circuits: Some circuits might still be captured in a form of C code that is synthesizable back to the
original circuit; such C code would provide tremendous portability advantages over other circuit representations

C code?

Manual
Capture

Synthesis

Designer
captures spatial
algorithm as
custom circuit

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

Spatial

Queue 16_u, 16_s, 1_1, 1_2, 2_1, 2_2, 4_1,
 4_2, 8_1, 8_2;
Split(16_u.dequeue, 16_u.dequeue, 1_1, 1_2);
stage1 = Merge(1_1.dequeue, 1_2.dequeue);
Split(16_u.dequeue, 16_u.dequeue);
stage1 += Merge(1_1.dequeue, 1_2.dequeue);
Split(stage1, 2_1, 2_2);
…

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

Same circuit

Temporal

17

To investigate whether circuits designed for FPGAs might be captured and

synthesized from C code, we examined all papers from six years of the IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM 2001-2006), a forum for

presentation of clever human-designed circuits for FPGAs (among other topics). We

found 70 papers that focused on description of new circuit-based algorithms or clever

circuit implementations of standard algorithms for some application. After estimating that

each example would require 2-3 days of investigation, we decided to investigate in-depth

half of those circuits. We pseudo-randomly chose the subset of 35 circuits to investigate

by sorting the 70 circuit papers according to their appearance in the proceedings, starting

from oldest to newest. We chose every other paper for investigation – we explain this to

make clear that the circuits were not handpicked based on their suitability for C code

representation.

We then strove to find C code descriptions for the circuits that would compile

back to the same circuit. The goal of the study was to find any C description that would

compile to the human-designed circuit. Specifically, the claim is not that all functionally

equivalent C algorithms would compile to that circuit. Only one is needed, and that one

would be used to distribute the circuit-based algorithm. Furthermore, the goal is not to

automate the derivation of the C code from the circuit, but merely to determine if a

competent designer could capture his/her circuit in C code if necessary.

If we were able to capture the circuit in C code that would synthesize back to the

same circuit, we classified the circuit as “re-derivable from C”.

18

Note that if we failed to classify the circuit as re-derivable from C, another C

algorithm for the application likely exists that would synthesize to some other circuit with

the same functionality, just not the same circuit as the human-designed one. That other

circuit would likely have slower performance.

We further sub-categorized the circuits that we found to be re-derivable from C as

either synthesizable from “temporally-oriented C” or “spatially-oriented C”. We define

“ temporally-oriented C” as the obvious algorithm that most simply captured the desired

behavior of the application (e.g., what we feel is the most “natural” algorithm). If we

failed to find such a C algorithm, we next tried to capture the circuit’s unique spatial

features, through careful use of subroutines and loops, such that a reasonable FPGA

synthesis tool should yield the original circuit again. While noting whether circuits were

captured in temporally-oriented and spatially-oriented C was not the main point of the

study, the distinction does provide some notion of the effort required by designers to

capture their circuit in C code, with spatially-oriented C being harder to write.

Furthermore, the distinction also shows the extent of the cleverness of the human-

designed circuit, with those derivable from the spatially-oriented C rather than

temporally-oriented C likely exhibiting more complex or novel circuit design features.

19

Because FPGA synthesis tools are still maturing and presently differ widely, we did not

simply run the C algorithm through one particular tool. Instead, we defined the

transformations and optimizations that could be expected in a mature “standard”

synthesis tool. The reader may thus determine for him/herself whether the

transformations are “standard” enough to be applied by synthesis tools. To perform

synthesis, we followed the methodology shown in Figure 4. If we were able to capture

the circuit in C, we converted that C code into a control/data flow graph. We optimized

the graph by performing the following optimizations in the order shown: function

inlining, loop unrolling, predication, constant propagation, dead code elimination, and

Figure 4: Study methodology. We modeled each circuit in C (when possible). We then performed the following
transformations and optimizations in the order shown, representing a “standard” synthesis tool, and observed whether the

original circuit was recovered.

“Standard” synthesis
tool

1. Function Inlining
2. Loop Unrolling
3. Predication
4. Constant
Propagation
5. Dead Code
Elimination
6. Code Hoisting

CDFG

Optimizations

Resource

VHDL
Creation

CDFG
analysis

C

Capture circuit in C
Same
circuit?
If not,
modify C
and repeat

Scheduling

20

code hoisting – straightforward optimizations that could be reasonably implemented in

any compilation tool. We performed definition-use analysis to verify that regions of a

circuit could be pipelined straightforwardly. We performed resource allocation by

allocating a resource for every operation in the dataflow graph. We could have used a

more conservative resource allocation, but most of the circuits we investigated were

pipelined, and therefore would not allow sharing of resources. We scheduled the graph

using resource-constrained list scheduling, inserting registers between each stage of the

dataflow graph. Again, we could have used a more conservative pipelining approach to

save area, but we were interested in maximizing clock frequency. Next, we converted the

scheduled graph into a structural VHDL representation that we then synthesized using

Xilinx ISE.

Designers typically define a custom memory interface to best serve the custom

circuit, yet our defined standard synthesis tool does not involve synthesis of custom

memory interfaces. Since this work concentrates on capturing the compute aspect of

custom circuits in C, and not the memory interface, we assume that the synthesis tool is

provided with information for each circuit from which the tool can synthesize a custom

interface similar to that in the custom circuit. Future work will involve developing

mechanisms for providing custom interface information as well as synthesis

transformations to generate custom interfaces.

Most of the custom circuits used a standard memory interface consisting of one

dual-ported memory, which allows one port for reading and one for writing. This kind of

memory interface allows for block transfers and single transfers, similar to many DMAs.

21

Some circuits implemented streaming data from off-chip memories, while others did not

use external memory.

For each example, we targeted the specific FPGA used for each of the custom

circuits in their original papers. Although we could have compared both the original

circuit and synthesized circuit on newer FPGA fabrics, we felt such comparison might be

unfair if the custom circuits were designed based on the characteristics of the original

FPGA fabric.

2.2.4 Example – Gaussian Noise Generator

Figure 5 shows the custom circuit in [88] for a Gaussian noise generator. The circuit

consists of four pipeline stages. The first stage utilizes linear feedback shift registers

(LFSRs) to generate a 32-bit and 18-bit random number, corresponding to u1 and u2.

Stage 2 uses the random numbers from the previous step as input to the illustrated

functions, which consist of square root, sine, cosine, and log functions. Stage 3 adds

every two consecutive results from stage 2. The circuit implements this functionality by

delaying one input for a cycle using a register and then adding the output of the register

with the output from the previous stage. This buffering results in a delay to the pipeline,

potentially causing an output to be generated every 2 cycles. Stage 4 multiplexes the

results from stage 3 to the output of the noise generator. By adding a register to the right

input of the multiplexor, the circuit generates an output every cycle, instead of two

outputs every two cycles.

22

We first tried to determine if the circuit was re-derivable from temporally-

oriented C. The natural temporal C uses a loop that executes the behavior of stages 1 and

2 twice to generate two samples for the accumulate step in stage 3. FPGA synthesis tools

would replicate the circuit used in each iteration of the loop, increasing the area of the

circuit without improving performance. We next tried to determine if the circuit was re-

derivable from spatially-oriented C. Figure 6 shows a portion of the C code to model the

Gaussian noise generator circuit in Figure 5. The C code utilizes a single function to

describe each pipeline stage of the custom circuit. The output is stored into the array

noise[]. To handle outputting to an array, we modified the code for stage 4 to store the

two noise samples to two memory locations, as opposed to multiplexing the output to a

single location. As we will show, this code is synthesized to the same stage 4 circuit

shown in Figure 5. For simplicity, the C code uses floating point arithmetic as opposed to

the fixed-point arithmetic in the custom circuit. The fixed-point code is similar, with the

main difference being that the code uses logical and operations to remove unused bits of

Figure 5: Circuit for a Gaussian noise generator.

Linear Feedback Shift Registers

1.2

u2

f(u1) g1(u2) g2(u2)

*
x1 x2

+

*

+

noise

Stage1

Stage2

Stage3

Stage4

u1

23

the random numbers, essentially specifying the width of each number to be 32 bits for u1

and 18 bits for u2.

The control and data flow graphs generated during synthesis for each function of

the C code are shown in Figure 7. Figure 7(a) shows the control flow graph for main(),

Figure 6: Spatial C code for Gaussian noise generator.

inline float rand0_1() {
 return rand()/((float) RAND_MAX+1);
}

inline Stage1 doStage1() {
 Stage1 result;
 result.u1 = rand0_1();
 result.u2 = rand0_1();
 return result;
}

inline Stage2 doStage2(float u1, float u2) {

 Stage2 result;
 float f_u1, g1_u2, g2_u2;

 f_u1 = sqrt(-log(u1));
 g1_u2 = sin(2*M_PI*u2);
 g2_u2 = cos(2*M_PI*u2);
 result.x1 = f_u1*g1_u2;
 result.x2 = f_u1*g2_u2;
 return result;
}

inline Stage3 doStage3(float x1, float x2) {

 static float acc1=0.0, acc2=0.0;
 Stage3 result;

 result.x1 = acc1 + x1;
 result.x2 = acc2 + x2;
 acc1 = x1;
 acc2 = x2;
 return result;
}

inline void doStage4(int i, int j,
 float x1, float x2) {

 noise[i] = stage3.x1;
 noise[j] = stage3.x2;

}

int main() {

 Stage1 stage1; Stage2 stage2; Stage3 stage3;
 unsigned int i=0;

 while (1) {
 stage1 = doStage1();
 stage2 = doStage2(stage1.u1, stage1.u2);
 stage3 = doStage3(stage2.x1, stage2.x2);
 doStage4(i, i+1%NUM_SAMPLES,

 stage3.x1, stage3.x2);
 i = (i+2)%NUM_SAMPLES;
 }

 return 0;
}

24

where each function call has a corresponding node in the graph. For simplicity, we have

omitted the control flow node for the code used to update the variable i. Figure 7(b)

shows the data flow graph for function doStage1(). We omit the control flow graph for

this function, and all other functions, because the corresponding graphs consist of only a

single node. The data flow graph for stage 1 assigns random numbers to the two outputs

of the function. Although not shown, the data flow graph also contains operations to

constrain the random numbers to values between 0 and 1. Figure 7(c) and Figure 7(d)

show the data flow graphs for the doStage2() and doStage3() functions. The data flow

graph for doStage4(), shown in Figure 7(e), produces two outputs instead of the single

output from Figure 5.

Figure 8 shows the circuits for each data flow graph for each C function after

synthesis performs scheduling, resource allocation, and binding. For stage 1, shown in

Figure 8(a), synthesis maps the random number generators to LFSRs. Figure 8(b) shows

the circuit for stage 2, for which synthesis utilizes approximation techniques to map the

Figure 7: Control/data flow graph for C-level Gaussian noise generator functions (a) main, (b) doStage1, (c) doStage2,
(d) doStage3, and (e) doStage4.

doStage1()

doStage2()

doStage4()

rand() rand()

u1 u2 f(u1) g1(u2) g2(u2)

*
x1 x2

u1 u2 u2

acc1 acc2 x1 x2

+ +

*

main()

doStage1() doStage2()

doStage3() doStage4()

acc1 acc2

x1 x2

noise[i] noise[j]

doStage3()

(a)

(b)

(c)

(d) (e)

25

functions in stage 2 onto the same resources used to approximate these functions in the

custom design. Unlike in the custom circuit, scheduling during synthesis is likely to insert

registers between the approximation circuits and the multipliers in order to reduce the

critical path length. For stage 3, shown in Figure 8(c), synthesis maps acc1 and acc2 onto

registers because the outputs from this stage are used again as inputs. Stage 4, shown in

Figure 8(d), multiplexes the two outputs from the data flow graph for this stage.

Synthesis adds the multiplexor because the outputs from the data flow graph are written

to memory, which in this case is a shared resource with only a single port. To allow both

inputs to be written to memory, synthesis delays input x2 one cycle using a register while

the circuit stores x1.

Figure 8: Datapaths after scheduling, resource allocation, and binding for (a) doStage1, (b) doStage2, (c) doStage3, (d)
doStage3, (e) main before pipelining, and (f) main after pipelining. Note the similarity with Figure 5.

LFSR

u1 u2

x1

noise[]

doStage1()

doStage4()

+

acc1

+

acc2

x2

sel

x1 x2 LFSR

f(u1) g1(u2) g2(u2)

* *

+

acc1

+

acc2

sel
noise[]

LFSR

f(u1) g1(u2) g2(u2)

* *

+

acc1

+

acc2

noise[]
sel

f(u1) g1(u2) g2(u2)

* *

u1 u2
doStage3() doStage2()

main() main() - pipelined
(a) (b) (c)

(d)

(e)
(f)

26

To optimize the circuit, synthesis can inline all of the functions for each stage into

the main function and then perform code hoisting to move the code for each stage into a

single control flow node, which is possible since there exists no control in each function.

The resulting data flow graph for this single control node is shown in Figure 8(e). During

scheduling, synthesis will insert a register at each level of the data flow graph, as shown

in Figure 8(f). Note the similarity of the circuit in Figure 8(f) with the custom circuit

shown in Figure 5. The only difference in the synthesized circuit is the addition of

registers before the multipliers – an addition that may actually improve performance

compared to the custom circuit.

The throughput of the synthesized circuit is identical to the custom circuit, with

each circuit producing a noise sample each cycle. The latency of each pipeline is

different, but this latency only determines when the initial output from the circuit is valid.

We point out that under certain situations, the two circuits are likely to differ in other

ways. For example, if the target architecture utilizes a dual-ported memory or a memory

with sufficient bandwidth to simultaneously store two results, then stage 4 of the

synthesized circuit will not contain the multiplexor or buffer register. This architectural

difference does not affect throughput, but does affect timing, resulting in two noise

samples every two cycles. To our knowledge, synthesis cannot guarantee the same timing

as the custom circuit due to the lack of timing information in the C code. However, the

timing difference after synthesis does not appear to be critical.

Thus, we classify this circuit as re-derivable from (spatially-oriented) C.

27

2.2.5 Example – Molecular Dynamics Simulator

Scrofano [118] creates a custom FPGA accelerator for molecular dynamics simulations.

The authors identify the nonbonded-forces calculations as the most time consuming

region of the simulation and provide a custom circuit for those calculations.

Figure 9(a) shows the pseudocode implemented by the custom circuit. For each

atom, the inner loop calculates the forces from each neighbor of the atom. The code

stores the forces in the array forceRAM, which the following loop stores into the

forceOBM array.

Figure 9(b) shows a high-level view of the custom circuit for the inner loop.

Scrofano utilizes two separate on-board memories (OBM) to store the positionOBM array

and the forceOBM array. Utilizing two memories allows the circuit to simultaneously

stream position and force data without stalling, therefore achieving a maximum

throughput of one force calculation per cycle. Scrofano implements the forceRAM array

in on-chip memory to minimize the amount of read/write mode switches that would be

Figure 9: Molecular dynamics accelerator. (a) Code for calculating nonbonded forces. (b) Custom circuit utilizing a divided
pipeline to reduce latency penalty. (c) The synthesized pipeline differs from the custom circuit by utilizing a single pipeline. The

synthesized circuit must stall due to a single memory, reducing throughput.
foreach atom i do
 ri = positionOBM[i]
 fi = forceOBM[i]
 n = 0
 foreach neighbor j of i do
 if |ri – rj| < rc then
 rj = positionOBM[j]
 fij = calcNBF(ri, rj)
 fi = fi + fij
 fj = forceOBM[j]
 forceRAM[n] = fj – fij
 n = n+1
 end
 end
 forceOBM[I] = fi

 foreach fj in forceRAM do
 forceOBM[j] = fj
 end
end

Pipeline1

Pipeline2

positionOBM[] forceOBM[]

forceRA
M

Pipeline1

positionOBM[], forceOBM[]

forceRA
M

(a) (b) (c)
Max throughput:
1 output per cycle

Max throughput:
1 output every 2 cycles

p1

p2

Latency

p1+p
2

Latency penalty: p2

Latency penalty: p1+p2

28

required if the forces were stored back immediately to the forceOBM array. To optimize

the datapath, the authors divided the pipeline into two pipelines separated by a FIFO.

Dividing the pipeline reduced the latency penalty that was incurred every time the inner

loop executed. The first pipeline generates output faster than the second pipeline and

therefore only the latency of the second pipeline has a significant effect on performance.

If we used C code based on the pseudocode in Figure 9(a) to try and model the

custom circuit, the inner loop becomes a fully pipelined circuit that streams in the force

and position data. Synthesis maps the forceRAM array onto block RAMs, which is

possible due to the small size of the array, resulting in a single pipeline that performs the

same operations as the two pipelines in the custom circuit. To our knowledge, there is

presently no common synthesis technique that automatically divides a pipeline as is done

in the custom circuit. Such a technique may be possible, requiring analysis to best

determine the placement and size of the buffer. By using a single pipeline, the

synthesized circuit incurs a larger latency penalty each time the inner loop executes, as

shown in Figure 9(c). The designer might instead direct the FPGA synthesis tool by

altering the C code in Figure 9(a) to model the buffer that separates the two pipelines.

This might be accomplished by inserting a function call to enqueue the intermediate

result of the first pipeline and dequeuing a result to the input of the second pipeline. Of

course, this relies on a model of a buffer the FPGA compiler can recognize. By modeling

the spatial constructs of the circuit, an FPGA tool would be able to effectively recover the

original circuit.

29

Another important difference when using the temporally-oriented code in Figure

9(a) is that the synthesized circuit uses a single memory for input. When synthesizing

code to a specific architecture, the synthesis tool must use the appropriate memory

architecture, which we assume to be a single off-chip memory. Therefore, the synthesized

circuit must read the position and force arrays from a single memory, which does not

provide sufficient bandwidth to execute the pipeline without stalls. Therefore, the

synthesized circuit has a lower throughput, outputting a force calculation every two

cycles. If enough on-chip RAM existed to store both arrays, or the synthesis tool could

stream data into two on-chip memories fast enough, then the synthesized circuit could

perform similarly to the designer-specified circuit.

Thus, we classify the molecular dynamics circuit as re-derivable from (spatially-

oriented) C.

2.2.6 Example - Cellular Learning Automata-Based Evolutionary

Computing

In [62], Hariri et al. proposed a custom architecture for cellular learning automata

based evolutionary computing (CLA-EC). This architecture consists of a ring of cells,

each of which stores a genome. The architecture for each cell is shown in

Figure 10(a). Each cell consists of multiple learning automata (LA) that determine

a new genome. The update circuit replaces the existing genome with the new genome if

the fitness value of the new genome is better. The majority function uses the genome of

30

the left and right neighbor cells to generate reinforcement signals that guide the learning

automata.

An abbreviated version of the C code we used to model the CLA-EC is shown in

Figure 10(b). This code iterates over some maximum possible number of cells,

which is based on the input size. For each cell, generateNewGenome() implements the

behavior of the majority function, learning automata, and the update function. The

generateNewGenome() function updates the new genome if the new genome is better,

otherwise the function sets new genome equal to the old genome. Because

generateNewGenome() only modifies a single cell, the loop containing the

generateNewGenome() function has no loop-carried dependencies, allowing synthesis to

parallelize the function calls by performing function inlining, loop unrolling, predication,

and code hoisting.

After the generateNewGenome() loop completes, updateGenomes() updates the

genome for each cell with the new genome determined by the generateNewGenome()

function calls. By modifying the genome of each cell, the updateGenomes() function

Figure 10: The proposed custom CLA-EC circuit consisting of a ring of (a) custom CLA-EC cells and (b) C pseudocode that
synthesizes to an almost identical parallel circuit (code for cell internals is omitted).

Majority

LA

Update

New Genome

Genome

LA LA

left
right

Cell cells[MAX_CELLS];
int main() {
 for (i=0; i < MAX_CELLS; i++)
 generateNewGenome(i);
 updateGenomes();
 return 0;
}
void updateGenomes(){
 for(i=0; i<MAX_CELLS; i++)

 cells[i].genome = cells[i].newGenome;
}

Cell

(a)
(b)

31

creates a dependency with the generateNewGenome() function, which uses the genome as

input. To handle this dependency, synthesis stores the genome in a register. The resulting

circuit is almost identical to the custom circuit. The only difference is the addition of a

multiplexor before the new genome register that either selects the output of the learning

automata or the output of the genome register.

The simplicity of the C code in Figure 10(b) suggests that this implementation

may also be the most natural way of writing the application in C. We classify the cellular

automata circuit as readily re-derivable from (temporally-oriented) C.

2.2.7 More Experiments

We described several examples from the FCCM literature and our attempts to capture

those designs in some form of standard C code. We now briefly highlight several other

randomly selected examples before summarizing results for the entire examined set.

Tripp [138] designed a circuit to implement a large metropolitan traffic simulation

(Road Traffic). Each cell computed car velocities and positions based on a specific rule

set imposed by the designers which reflected real world traffic conditions. When we

focused on the computational aspect of each cell in the network, we found the traffic

design to be readily derivable from (temporally-oriented) C.

Bogdonav [19] designed a systolic array structure to solve matrix calculations

using Gaussian elimination (Elimination). The authors in fact modified a temporally-

oriented algorithm to achieve their circuit design. We also found the circuit to be re-

derivable from C code. We decided to model the Gaussian elimination calculation with

32

spatially-oriented C code to ensure synthesis transformations would recover the original

systolic array structure.

Krueger [86] designed a floating point unit to add two streaming numbers. The

design incorporated variable delays, which we were not able to capture in either temporal

or spatial C. We classified their design as not re-derivable from C. We again point out

that there do exist C algorithms for this application that would synthesize to some circuit

– just not to the particular published circuit.

Figure 11: 82% of the studied circuits published in FCCM were re-derivable from C, meaning they could be captured in
some form of C such that a synthesis tool could be expected to synthesize the same or similar custom design.

 Year of Publication Design Re-derivable from C? Method/Reason
 2001 3D Vec. Normalization Yes Spatial, if online algorithms can be specified

 2001 Efficient CAM No Uses dynamic FPGA routing
 2001 Automated Sensor Yes Temporal, floating point -> fixed point
 2001 Regular Expression Yes Spatial, creative connections of one-bit flip flops
 2002 Hyperspectral Image Yes Spatial, data reordering
 2002 Machine Vision Yes Spatial, custom pipelining
 2002 RC4 Yes Temporal, straightforward implementation
 2002 Set Covering Yes Spatial, data structures for easy hw implementation
 2002 Template Matching Yes Spatial, heavy modifications to original algorithm
 2002 Triangle Mesh Yes Spatial, custom encoding scheme
 2003 Congruential Sieves Yes Temporal, straightforward translation
 2003 Content Scanning Yes Temporal
 2003 F.P and Square Yes Spatial
 2003 Gaussian Noise Yes Spatial, requires the use of spatial C constructs
 2003 TRNG No Requires sampling a high frequency clock for noise
 2004 3D FDTD Method Yes Spatial
 2004 Deep Packet Filter No Requires knowledge of underlying FPGA
 2004 Online Floating Point No Online algorithm, variable length buffers
 2004 Molecular Dynamics Yes Spatial
 2004 Pattern Matching Yes Spatial
 2004 Seismic Migration Yes Spatial
 2004 Software Deceleration No Use a uP for its cache
 2004 V.M Window No Specific timing schemes implemented
 2005 Data Mining Yes Spatial
 2005 Cell Automata Yes Temporal
 2005 Particle Graphics Yes Spatial
 2005 Radiosity Yes Temporal
 2005 Transient Waves Yes Spatial
 2005 Road Traffic Yes Temporal
 2006 All Pairs Shortest Path Yes Spatial
 2006 Apriori Data Mining Yes Spatial
 2006 Molecular Dynamics Yes Spatial, define separate memories, custom pipeline
 2006 Gaussian Elimination Yes Spatial
 2006 Radiation Dose Yes Temporal
 2006 Random Variates Yes Spatial

 Totals: 82% of the circuits were re-derivable from C

33

Figure 11 summarizes all the designs studied. As described earlier, we identified

70 custom circuit designs published in the last six years of the IEEE Symposium on

Field-Programmable Custom Computing Machines, of which we chose every other

circuit to study in depth, totaling 35 custom circuit designs. Of the 35 designs, 29 of the

designs, or 82%, were found to be re-derivable from C. Of the 29 circuits re-derivable

from C, 9 of those, or 25% of all 35 circuits, were captured in temporally-oriented C.

Again, this means these designs could have been written in natural high level code, and

we could have reasonably expected a synthesis tool to recover the circuit, without much

human effort at the circuit level. We note that a benefit of being able to capture the circuit

as temporally-oriented C is that if the platform on which the circuit runs happens to be a

microprocessor, the code may be able to run at or near its best performance, because the

algorithm may be the same algorithm one would have written if initially targeting a

microprocessor.

20 of the circuits, or 57%, were re-derivable from C were captured in spatially-

oriented C code. There were several common reasons why a design had to be described

in spatially-oriented C as opposed to the more natural temporally-oriented algorithm.

Custom circuit designs often employed a combination of spatial techniques, including

intricate pipelining, custom buffering, advanced memory hierarchies, and systolic array

connectivity, none of which could reasonably be re-derived from the standard synthesis

techniques.

For 17% of the circuits, we were unable to capture the circuit in any form of C

code that would be synthesized back to that circuit. James-Roxby et. al [80] proposed

34

logic-centric systems in which they added microprocessors to the design to make

effective use of the cache hierarchy, a technique not reasonably describable using

standard C constructs. Several circuits [86][150] utilized low level cores that made re-

deriving from C difficult. Others [145] implemented circuits that relied on precise timing,

which is also difficult to capture in C. One circuit [81] took advantage of the dynamic

reconfigurability of the FPGA to implement dynamic routing, a technique clearly not

supported by standard C constructs.

In summary, 82% of the circuit designs published in a forum for circuit-based

algorithms could be captured in some form of standard C such that a synthesis tool

supporting a basic set of transformations could recover the circuit from that C code.

Figure 12(a) compares the performance of the custom-designed circuits and the

circuits synthesized from the C code for several of the examined circuits. All

performances are normalized to the performance of the custom-designed circuits. For

each example shown, the performance of the synthesized circuit was either identical to

the custom circuit or slightly slower than the custom circuit. Had we modeled the

molecular dynamics circuit with the original temporal pseudocode shown in Figure 9(a),

the synthesized circuit would have been 2.3x slower. This performance decrease would

have been caused by the inability of synthesis to split a pipeline into smaller pipelines

that communicate using FIFOs. By modeling the molecular dynamics circuit with custom

spatially-oriented C code, synthesis is able to generate a nearly identical circuit.

Figure 12(b) compares the area, in slices, of the synthesized circuits and the

custom circuits. On average, the synthesized circuits required only 6% more slices. This

35

extra area was used by multiplexors and other glue logic that synthesis was unable to

remove, and by additional pipeline registers.

advantage of describing a circuit in C is that the C can be distributed to different

platforms having different amounts of FPGAs, and an FPGA synthesis tool could thus

allocate more or less resources for the application without requiring a designer to

distribute a new circuit. In this section, we estimate the changes in performance for each

application when being implemented on both a smaller and larger FPGA than the ones

used in the previous section.

A larger FPGA for the Gaussian noise generator would not improve the

performance of calculating a single noise sample, but would allow for more samples to be

generated per cycle by replicating the circuit several times. While the ability to replicate a

circuit is not unique to writing the circuit in C, it certainly makes the task easier.

Alternatively, a larger FPGA could be used to improve the accuracy of the approximation

circuits.

For the molecular dynamics simulator, a larger FPGA could potentially eliminate

the memory bottlenecks of the synthesized design. If a large portion of the input could be

Figure 12: Comparison of original custom circuits versus circuits synthesized from derived sequential code
representations: (a) Normalized xecution time and (b) Normalized area (slices) Both metrics are normalized to values for

the original custom circuit.

0
0.5

1
1.5

2

CLA
-E

C
Nois

e
MD

Tra
ffic

Elim
ina

tio
n

Floa
t

Ave
ra

ge

Custom

Synthesized

(a) Normalized Execution Time

0
1
2
3
4
5

CLA
-E

C
Nois

e
MD

Tra
ffic

Elim
in

ati
on

Floa
t

Ave
ra

ge

Custom

Synthesized

36

stored in on-chip memory, then synthesis could create the same, or even an improved

memory architecture compared to the custom circuit. Increased on-chip memory could

provide sufficient bandwidth to read multiple positions and forces, improving the

throughput of the pipeline to several force calculations per cycle.

For a larger FPGA, CLA-EC potentially would achieve significant performance

improvements compared to software, due to the ability to implement more cells on the

same device. In [86], the authors show an approximately linear speedup compared to

software when increasing the number of cells. Based on their results, an FPGA with twice

the capacity would result in an approximate 2x speedup. Alternatively, a larger FPGA for

CLA-EC would allow the circuit to determine an improved result for a given run time.

For the Gaussian Elimination circuit, a larger FPGA would not improve the

performance of the custom circuit for existing matrix sizes. However, a larger FPGA

would enable circuits for larger matrices, improving performance by at least 2x for a

matrix that would not fit in a smaller FPGA.

Similarly, a larger FPGA size for the metropolitan traffic simulation would enable

simulations of larger road networks.

For the online floating point unit, additional resources would not improve

performance because the parallelism of the hardware is limited by non-constant bounded

loops that cannot be unrolled.

For smaller FPGAs, the C code for each application could be synthesized by the

FPGA to use fewer resources. In fact, every example except the Gaussian noise generator

could be implemented with a datapath consisting of only a multiplier, an adder, a register

37

file, and a corresponding amount of steering logic. The performance of these smaller

circuits would be slower than the pipelined implementations of the original circuits, but

the C representation would still provide a correct implementation. For the Gaussian noise

generator, the C representation would synthesize to a circuit as long as the FPGA had

enough resources to implement the sine, cosine, square root, and log functions.

Furthermore, every example could be implemented entirely on a microprocessor,

at the obvious cost of slowdown. We leave examining the extent of that slowdown, and

partitioning among microprocessor and FPGA, for future work. However, because 25%

of the examined circuits could be captured in temporally-oriented C code, the

microprocessor performance of these captured circuits is likely comparable to

corresponding software-oriented implementations, since these implementations are likely

to be similar.

2.3 Other Related Work

2.3.1 C-based Synthesis Tools

There is a growing community that seeks to convert existing sequential algorithms into

structures suitable for FPGA implementation. Numerous FPGA synthesis tools exist, with

several commercial offerings beginning to appear. Most offerings extend the C language

with parallel constructs or compiler-specific pragmas that aid in exposing parallelism and

pipelining opportunities. Other efforts [106][143] automatically attempt to extract as

much parallelism and pipelining opportunities, while still allowing the original C code to

compile for a traditional CPU.

38

2.3.2 Parallel Languages

There are a number of models of computation and circuit capture methods. Brown [21]

shows that a parallel model of computation requires machine primitive units, control

constructs, communication mechanisms, and synchronization mechanisms. Circuits are

usually captured in a hardware description language (HDL) like Verilog [141], or VHDL

[142], although circuits can also be captured using schematics.

2.3.3 Portability

There has been previous work in capturing applications and circuits to increase

portability. Andrews and Anderson [3][4] focus on creating operating system and

middleware abstractions that extend across the hardware/software boundary, enabling a

designer to create applications for hybrid platforms with one executable. Levine [91]

describes hybrid architectures with a single, transformable executable. They argue that an

executable described for a queue machine (converse of a stack machine) makes runtime

optimizations to a specialized FPGA fabric feasible. Moore [100] describes writing

applications that dynamically bind at runtime to reconfigurable hardware for the purposes

of portability. Similar to Andrews and Andersons, the authors develop hardware/software

abstractions by writing middleware layers that allow application software to utilize

reconfigurable DSP cores. Vuletic [146] proposes a system-level virtualization layer and

a hardware-agnostic programming paradigm to hide platform details from the application

39

designer and lead to more portable circuit applications. Lysecky and Stitt [93][131]

showed that a temporally-based binary could potentially be used as part of a standard

FPGA binary approach. They introduce Warp Processors. Warp processors can

dynamically profile, extract, and synthesize computationally expensive temporal kernels

into fast FPGA circuits. Their approach makes FPGA tool flows completely transparent,

and result in application speedups up to 10X, and energy savings of up 80%.

2.4 Requirements of a Language for Spatial Capture

C is for Circuits demonstrated that sequential languages possess many constructs that

would form part of a viable distribution format for FPGA applications. In some cases, the

sequential programming constructs (sequential instructions, function calls, etc) were

sufficient to capture an FPGA application. In many other cases, the sequential

programming model was limited, forcing awkward implementations, or at worst not

being able to capture the same behavior. For the FPGA applications that were difficult or

impossible to capture using only a sequential programming model, we identified several

programming constructs that would have made such implementations feasible, or simpler

to capture. One requirement is the ability to spatially connect two components together

through the use of a specified interface. Another requirement is the ability to control

precise timing synchronization between spatially connected components. The third

requirement is that the language should be able to be executed on both a microprocessor

and an FPGA. Such a language requirement will include sequential constructs found in a

40

language like C, with the addition of spatial and timing constructs found in explicitly

parallel languages like VHDL and Verilog.

For illustrative purposes, we use the pipelined binary tree, developed by Lysecky

[94] to guide decisions on which parallel programming model best suits the constructs

required for such a portable distribution format. Figure 13 shows an n-level pipelined

binary tree, a high throughput circuit for the pattern counting problem. Target patterns are

stored in the tree in breadth-first order. The first level (root) contains only one pattern, the

second level contains two patterns, the third four patterns, the fourth eight patterns, and

so on. Each level consists of control logic and a memory to store the patterns, and another

memory of the same size (not shown in the figure) to maintain pattern counts. Each level

operates concurrently, taking information from the previous level, and sending

information to the next level.

Figure 13: Pipelined Binary Tree [94]. Each level operates concurrently, taking the pattern and address information from
the previous level, and passing information to the next level. Such a design cannot readily be captured in a sequential

language, and requires explicit parallel constructs to capture for portable distribution

Level 1 logic Memory
1 pattern

logic Memory
2 patterns

logic Memory
4 patterns

.

. .

Level 2

Level 3

Level n
logic Memory

2n patterns

.

. .

Current pattern

41

Level 1 receives the current pattern and compares with the target pattern. If equal,

level 1’s logic increments the count associated with that target pattern. If less, the logic

passes the pattern to level 2, informing level 2 to look in its left node (because in a binary

tree, if the pattern is less than the root, then search proceeds down the left sub-tree) – in

particular, by telling level 2 to look at address 0. If greater, level 1 tells level 2 to look in

address 1. Level 2 then compares the pattern with the target pattern located in the address

it received from level 1 (while level 1 meanwhile processes the next incoming pattern). If

equal, level 2’s logic increments the count associated with that target pattern. If less, level

2 appends a 0 to the address, so if the address was 0, the new address is 00; if it was 1,

the new address is 10. If greater, level 2 appends a 1 to the address, yielding either 01 or

11. Subsequent levels operate similarly, either incrementing their count, or appending 0

or 1 to the address as they pass the address to the next level. The pipelined binary tree is

unique in the sense that it’s an explicitly parallel algorithm which dedicated

interconnections, precise timing, and that which cannot readily be captured in a

sequential language like C for distribution purposes.

2.4.1 POSIX

One popular method for implementing parallel based applications is to use the POSIX-

based approach. POSIX is a thread-based library targeting C-based languages that allows

a designer to capture parallel programs with a predefined set of library function calls to

create, spawn, and join parallel computations (processes) together. POSIX-based

programming represents a possible method for capturing FPGA-based applications

42

because the combination of parallel constructs (from POSIX) and the sequential

constructs (from the C-based language) seem to match the requirements needed of many

FPGA based applications.

Figure 14 shows the earlier described pipelined binary tree implemented using a

POSIX-based approach. The implementation works, but suffers from several

disadvantages. Because the pipelined binary tree benefits from precisely timed

communication in which every level is speaking with the next level every cycle,

Figure 14: Snippet of POSIX-based implementation of one level of the pipelined binary tree and how levels are connected
and how they communicate.

unsigned char level1_pattern;
unsigned char level1_address;
unsigned char level1_enable;

unsigned char level2_pattern;
unsigned char level2_address;
unsigned char level2_enable;

sem_t timestep_done,computeLevel1Done;
sem_t level1_pattern, level1_address, level1_enable;
sem_t level2_pattern, level2_address, level2_enable;

void * ClockTick(void * arg) {
 while(1){
 sem_wait(&computeLevel0Done);
 sem_wait(&computeLevel1Done);
 sem_wait(&computeLevel2Done);
 sem_post(×tep_done);
 }
}

int main(){
 pthread_t timeStepFunction;
 pthread_t computelevel0;
 pthread_t computelevel1;
 pthread_t computelevel2;
 …
 pthread_create(&computelevel0);
 pthread_create(&computelevel1);
 pthread_create(&computelevel2);
 pthread_create(&timeStepFunction);

 pthread_join(computelevel0, NULL);
 pthread_join(computelevel1, NULL);
 pthread_join(computelevel2, NULL);
 pthread_join(timeStepFunction, NULL);

 return 0;
}

void * computeLevel1(void * arg) {
 static TPM[2];
 TPM[0] = 10;
 TPM[1] = 20;

 while (1) {
 sem_wait(×tep_done);
 sem_wait(&level1_pattern);
 sem_wait(&level1_address);
 sem_wait(&level1_enable);

 //actual behavior of level1
 level2_pattern = level1_pattern;
 if(level1_pattern == TPM[level1_address]){
 level2_address = (level1_address << 1) | 1;
 }
 else{
 level2_address = (level1_address << 1) | 0;
 }

 if(level1_pattern == TPM[level1_address]){
 level2_enable = 0;
 }
 else{
 level2_enable = 1;
 }

 sem_post(&level2_pattern);
 sem_post(&level2_address);
 sem_post(&level2_enable);
 sem_post(&computeLevel1Done);
 }
}

43

modeling such behavior using a thread-based approach is difficult, hard to read, and

difficult to extend. As shown in the figure, the designer must explicitly create a new

thread that manages global time. Also, the POSIX design relies on using a complicated

set of locks and semaphores to guard the global memory space from being incorrectly

written to and/or read from. Whereas one hallmark trait of FPGA-based circuits is the

precisely-timed communication between concurrently executing components, POSIX-

based approaches typically benefit most coarse communication mechanisms, and begin to

suffer both in performance and robustness as the implementation tries to capture finer

grained communication granularity.

2.4.2 Other Thread-Based Approaches

There are other thread-based approaches we considered as a possible portable distribution

format for FPGA-based applications. The Message Passing Interface (MPI) [97]

represents one such approach. In contrast to a POSIX-based approach which uses shared

memory to communicate among concurrently executing components, concurrently

executing in MPI-based applications pass explicit messages to each other, both

synchronously and asynchronously. MPI-based approaches work well for large

distributed systems, but still don’t match the precisely timed communication model often

seen of FPGA applications.

Real-time operating system (RTOS’s) represent a finer grained approach,

allowing the user to time at some granularity the period at which parallel processes

should execute, but still fall shy of the precisely-timed communication required of many

44

FPGA applications. For instance, while an RTOS might allow the designer to specify that

a set of processes execute every millisecond, such granularity is often insufficient, and

there is usually no guarantee as to the ordering of the execution of the processes, which

could lead to incorrect behavior.

2.4.3 SystemC

Another method for capturing FPGA applications is to use SystemC. SystemC is a set of

libraries that seeks to bridge the gap between HDLs and the standard programming

language C++, by achieving HDL functionality using C++ objects, thus enabling a

designer to describe a complete system, including both sequential program behavior and

circuit behavior, in a single language environment. Figure 15 shows the same pipelined

binary tree captured using SystemC. The SystemC method is attractive, allowing a

designer to capture concurrently executing components using well known C++ practices

(class creation, templates, etc) while still allowing for precisely timed communication

because each component be “clocked” by a global clock that manages simulated time,

and need not be explicitly introduced into the design.

45

We have chosen to use SystemC as distribution format for several reasons.

SystemC allows for the spatial connection of concurrently executing components, the

ability to precisely time the communication between multiple components, and the ability

Figure 15: Snippet of SystemC implementation of a level of the pipelined binary tree and how multiple levels are
connected.

class LEVEL1: public sc_module {
 public:
 sc_in<sc_uint<8> > p_i; //pattern
 sc_in<sc_uint<1> > A_i; //address
 sc_in<bool> cen_i; //chip enable
 sc_in_clk clock; //input clock

 sc_out<sc_uint<8> > p_o; //pattern
 sc_out<sc_uint<2> > A_o; //address
 sc_out<bool> cen_o; //chip enable

 // Tell SystemC this is a SystemC module
 SC_HAS_PROCESS(LEVEL1);

 int TPM[2];
 int CM[2];

 int address;

 // Constructor, declare concurrent processes here
 LEVEL1(sc_module_name n) : sc_module(n) {
 SC_METHOD (computeLevel1);
 sensitive << clock.pos();
 CM[0] = 0; CM[1] = 0;
 TPM[0] = 8; TPM[1] = 24;
 }

void computeLevel1() {
 p_o.write(p_i.read()); //pattern is pass thru

 address = A_i.read().to_int();

 if(p_i.read().to_int() > TPM[address]){
A_o.write(sc_uint<2>((A_i.read(), true)));
 }
 else{
 A_o.write(concat(A_i.read(), false));
 }

 if(p_i.read().to_int() == TPM[address
 cen_o.write(false);
 }
 else{
 if(cen_i.read() == true){
 cen_o.write(true);
 }
 else{
 cen_o.write(false);
 }
 }

 }

class BIN_TREE: public sc_module {
 public:
 sc_in<sc_uint<8> > p_i; //pattern
 sc_in<bool> A_i; //address
 sc_in<bool> cen_i; //chip enable
 sc_in_clk clock; //input clock

 sc_out<sc_uint<8> > p_o; //pattern
 sc_out<sc_uint<5> > A_o; //address
 sc_out<bool> cen_o; //chip enable

 // Tell SystemC this is a SystemC module
 SC_HAS_PROCESS(BIN_TREE);

 // Constructor, declare concurrent processes here
 BIN_TREE(sc_module_name n) :
 sc_module(n), bintree0("level0"),
bintree1("level1"),
 bintree2("level2"), bintree3("level3"),
bintree4("level4") {

//0th LEVEL
 bintree0.p_i(p_i);
 bintree0.A_i(A_i);
 bintree0.cen_i(cen_i);
 bintree0.clock(clock);

 bintree0.p_o(pattern_s01);
 bintree0.A_o(address_small);
 bintree0.cen_o(chipEnable_s01);

//FIRST LEVEL
 bintree1.p_i(pattern_s01);
 bintree1.A_i(address_small);
 bintree1.cen_i(chipEnable_s01);
 bintree1.clock(clock);

 bintree1.p_o(pattern_s12);
 bintree1.A_o(address_medium);
 bintree1.cen_o(chipEnable_s12);

Use temporally-oriented
code to implement
internal behavior

Explicit ports for
connecting
concurrently
executing
components

Interconnections
are simple and
natural

46

describe the behavior of components using temporally-oriented constructs. Additionally,

the SystemC libraries are freely available and becoming more widely adopted.

47

Chapter 3

SystemC-on-a-Chip Framework

3.1 Overview

SystemC [133] represents a digital system description approach based on C++. SystemC

uses object-oriented features of C++ to enable descriptions that include features common

in previous hardware description languages (HDLs), such as creation of components,

instantiation and connection of components to form a circuit, and precisely-timed

communication and execution among concurrently-executing components, all using

existing C++ syntax. Regular C++ code can be included in descriptions, and SystemC

also provides a thread library, thus supporting description of both the “software”

(sequential instructions coupled with parallel threads) and “hardware” (circuit) parts of an

entire system in a single description language.

While a SystemC description can be executed on a PC for simulation purposes

before eventually synthesizing the description to an ASIC, FPGA, or board-level

customized implementation, in-system SystemC emulation, wherein the executing

description would interact with physical inputs and outputs (I/O), would also be useful.

48

In-system emulation is common for embedded processors. Though slower than a

custom implementation, emulation enables early prototyping, and benefits from real I/O

rather than fabricated I/O in simulation, whose creation can be difficult and time-

consuming while still not matching the complexity and nuances of real I/O. Emulation

can be especially useful for SystemC, as illustrated in Figure 16, due to the fact that

synthesis tools can be expensive (compared to compilers), may only run on limited PC

platforms and be challenging to install (especially on lower-end PCs), may be

unpredictable with respect to circuit size/speed or tool runtime, often require long

runtimes (such as hours or days), may not support particular target devices or platforms,

and can only synthesize the parts of the code written for synthesis. The main tradeoff is

Figure 16: SystemC-on-a-Chip allows a designer to emulate SystemC descriptions on various supported development
platforms. Emulation enables early prototyping and interaction with real peripherals and I/O, while reducing the need for

advanced compilation and synthesis.

Increased design time and complexity

SystemC
Description

SystemC
bytecode
compiler

SystemC-on-a-Chip

Compilation/
Synthesis

Circuit
Emulator

Each development platform
might require SystemC
rewrites or redesigns

Circuit
Emulator

Development

Development

Compilation/
Synthesis

Portable
SystemC
bytecode

Standard Tool Flow

bit or binary
files

49

that emulation is typically much slower than native platform execution. Another tradeoff

is that the emulation engine must be present on a target platform, but this is a one-time

task, which may be done by the platform’s developers or by platform users (such as

teaching assistants in an educational setting).

For education, where system execution speed may not be a top priority, emulation

may be entirely sufficient, such as when describing a microprocessor system as is

commonly done in computer architecture courses, where such descriptions may never be

intended for synthesis, but execution on a physical platform is desired. In fact, for some

systems (in education settings or otherwise), emulation may be fast enough to serve as a

final implementation, obviating the need for synthesis, akin to virtual machines

sometimes being sufficient for executing processor bytecode such as Java bytecode. For

example, a “human reaction timer” system may involve several interacting components

interfacing with buttons, LEDs, and LCDs, with emulation speed being fast enough to

interact with all these items. In such cases, SystemC ultimately represents a parallel

programming approach such as an approach using POSIX threads, with the added benefit

of supporting circuit-style spatial connectivity, but the drawback of not (presently)

supporting real-time scheduling as in a real-time operating system approach.

We introduce an approach to SystemC emulation, involving several parts. We

created a compiler to convert SystemC to a new bytecode format that we developed,

which possesses MIPS-like instructions supplemented with new SystemC-specific

instructions that convey spatial and timing information. We developed an emulation

engine that can run on a microprocessor on a development platform and that executes the

50

SystemC bytecode while interacting with I/O and (optional) peripherals (frame buffers,

UART, etc.). Because portability is important in the approach, we introduce a USB flash-

drive method for programming, wherein the compiler-generated textual bytecode file is

copied to a USB flash-drive, which is then read by the development platform and just-in-

time translated to the machine-level bytecode used by the emulation engine. For the

common situation where the emulation engine is implemented on (or with access to) an

FPGA, we developed FPGA-based custom emulation accelerators that substantially

increase the emulation speed, enabling SystemC execution speeds comparable to middle-

to-high-end PCs.

3.2 Related Work

There has been research in the field of hardware emulation for verification and

testing, including the BEE reconfigurable platform [27], and network-on-chip emulation

platforms [52]. Nakamura [105] describes a hardware/software verification platform that

uses shared register communication between a processor simulator and FPGA emulator.

Benini [15] describes virtual in-circuit emulation of SystemC circuits for co-verification

and timing accurate prototyping. Rissa [116] evaluates the emulation speeds of several

SystemC models compared to standard HDL models.

Much research has involved virtualization [92][124], with several commercial

products developed in response to the need for portable virtual machines. VMware [147]

and the open source product Xen [153] concentrate on developing virtual machines that

allow the end-user to run multiple operating systems concurrently. The Java Virtual

51

Machine [127] allows the programmer to write operating system independent code, and

tools like DOS Box and console emulators allow the user to run legacy applications in

modern operating systems. Fornaciari [47] extends virtualization to FPGA platforms,

giving the application designer a virtual view of an FPGA that is then physically mapped

via operating system functionality. Virtualization has also been used to abstract complex

microcontroller details from the beginning embedded systems student [123].

3.3 SystemC-on-a-Chip Components

The SystemC-on-a-Chip platform consists of four main parts, including a SystemC

bytecode compiler, a new intermediate SystemC bytecode format, a portable USB flash

drive download interface, and an emulation engine.

3.3.1 SystemC Bytecode Compiler

We considered several options to achieve in-system emulation of SystemC descriptions.

One approach was to port the publicly available SystemC libraries to each development

platform, and add support for I/O and peripheral interaction. Such an approach would

allow the same SystemC binary to run on any supported development platform, including

standard PCs. Also, the SystemC circuit would run natively on the development

platform’s microprocessor. However, the SystemC libraries are large and require OS

support, thus limiting the number of platforms that could support the SystemC-on-a-Chip

framework. Furthermore, the SystemC libraries build a simulation kernel into the circuit

52

executable, increasing the size of the executable and making testing multiple SystemC

descriptions quickly more difficult.

Another option was to decompile the SystemC executable, extract the circuit, and

retarget that circuit for a custom emulation framework. The decompilation approach

separates the circuit from the simulation kernel, allows testing multiple circuits quickly,

and potentially a smaller circuit executable. A custom emulation framework also allows

smaller development platforms to take advantage of in-system SystemC emulation.

However, decompilation is difficult, and solutions that operate at the source SystemC

level seemed more feasible.

The option that we chose was to directly operate from SystemC source code to

produce bytecode, as shown in Figure 17. Our SystemC compiler builds upon the

PINAPA tool [102]. Originally intended as a front-end for circuit verification tools,

Figure 17: SystemC bytecode compiler: (a) The SystemC bytecode compiler builds on PINAPA, a SystemC front-end
tool, and uses a custom SystemC bytecode backend; (b) Sample code generation during the first phase of the SystemC

bytecode back end.

Pinapa Front End

ELAB

AST

Link

Bytecode Back End

//sample SystemC
//code
 i = y + 5;
 z = x[i] * x[i-1];
//
//more code

--sample SystemC
--bytecode
ADDI $1 $2 5
LW $3 0($1)
SUBI $4 $1 1
LW $5 0($4)
MULT $6 $3 $5

Pinapa

SystemC
bytecode

Code
Generation 1

SystemC Bytecode Compiler Expr

 i

Modify

 +

 y 5

Modify

Expr

 z *

Array Array

 x i x -

 i 1

Register
Allocation

(a) (b)

 SystemC
 Description

53

PINAPA provides a gcc compiler front-end to SystemC circuits that extracts a circuit’s

spatial and architectural features from the SystemC description.

The PINAPA front-end performs two operations on the SystemC program.

PINAPA uses a modified version of the gcc compiler to extract behavioral information

about each process and component in the circuit to generate the corresponding abstract

syntax trees (AST), and uses a modified SystemC kernel to extract the circuit’s

architectural features, like ports, signals, and spatial connectivity. Finally, PINAPA links

the architectural description (ELAB) to each component’s AST to form the intermediate

output.

We created a custom two-pass back-end to the PINAPA compiler that accepts

PINAPA’s AST+ELAB output and generates SystemC bytecode. The first pass traverses

each ELAB component’s AST. The first pass inlines auxiliary functions, flattens

hierarchical descriptions, and generates initial SystemC bytecode assuming an infinite

amount of available registers, shown in Figure 17(b). The second pass performs a linear

scan register allocation [114] on the first pass output to constrain the intermediate code to

a fixed number of registers. The output of the register allocation pass is a readable text

file of the SystemC description in SystemC bytecode.

3.3.2 SystemC Bytecode Format

The SystemC-on-a-Chip platform accepts a bytecode version of the SystemC description,

and not a traditional SystemC binary, nor the SystemC source code. A traditional

SystemC binary includes much more information than is actually required to emulate the

54

application, including constructs to support object-oriented C++ programming, and the

simulation kernel. SystemC source code separates the circuit from the simulation kernel,

but requires compiler support on each development platform. Similar to Java bytecode

and a Java Virtual Machine, an intermediate SystemC bytecode format separates the

SystemC description behavior from the simulation kernel, doesn’t require a platform

compiler, and can run on any development platform that supports the SystemC bytecode

format.

The format of the SystemC bytecode is shown in Figure 18. The SystemC

bytecode is a flattened version of the original SystemC description. The SystemC

bytecode compiler flattens the SystemC description to more efficiently emulate the

SystemC bytecode. A SystemC circuit is composed of a list of signals and a list of

processes. A signal is a wire or set of wires that connects independently running

processes, and is defined by a signal name and bit width. A process is a behavioral

description of a circuit entity. A process is defined by a sensitivity list, a list of signals the

process is sensitive to, and a list of sequential instructions which define the process’s

behavior.

55

A process is captured as a sequence of sequential instructions. The SystemC

bytecode instructions are a derivative subset of the MIPS RISC register machine

instruction set [67], shown in the bottom half of Figure 18. We also considered targeting

virtual stack or queue machines. The Java Virtual Machine [127] executes bytecode

instructions intended for a stack machine, and [91] executes bytecode instructions for a

queue machine. Proponents of stack and queue based bytecode formats argue that the

stack/queue bytecode can more efficiently run on a virtual machine because the operands

are implied. Other studies [37] have shown that the advantages of stack machines aren’t

Figure 18: SystemC bytecode format. Each process is described by a number of MIPS-like instructions, with additional
instructions added for SystemC specifics, like reading signals, extracting bit ranges, etc.

circuit: signals processes
signals: signal or
 signals signal
processes : process or
 processes process
signal : SIGNAL NAME COLON NUMBER
process : PROCESS sensitivity_list code
sensitivity_list: NAME or
 sensitivity_list NAME
COMMA
code: instruction or
 code instruction
instruction:
SRL or SLL or SLLV or SRLV
or MULT or MFLO or ADD
or SUB or AND or OR or ADDI
or ANDI or ORI or XORI
or SUBI or LW or SW

or J or JR or BEQ or BNE
or BLE or BGT or BLT or BGE

or BIT or RANGE or READ
or WRITE or CONCAT or WAIT
or END

SystemC-
specific
instructions

Control
instructions

Computation
instructions

56

as clear. The authors show the bytecode targeted towards a register machine can be

competitive with stack machine code, and usually results in more compact code. An

additional advantage is that register bytecode is more readable, potentially allowing a

student to write bytecode in the absence of a SystemC bytecode compiler.

SystemC bytecode format supports three different types of instructions:

computation/memory instructions, control instructions, and SystemC-specific

instructions. The computation and control instructions are derived from the MIPS

instruction set [67]. We chose the RISC MIPS instruction set because the SystemC

bytecode is easy to generate, because a RISC-based emulator can be efficient [37], and

because the code is understandable to the beginning student. We also chose a

representative subset of the MIPS instructions that would allow specifying all circuits

described in the synthesizable subset of SystemC[134].

Figure 19: USB interface. The user copies SystemC bytecode to a USB flash drive, plugs the drive into a platform
and pushes a button—the platform then begins emulating the SystemC description.

Plug the USB flash
drive into the
development platform

Push the button to start
the SystemC emulation

57

We added a number of SystemC-specific instructions to the base MIPS instruction

set, including the BIT, RANGE, READ, WRITE, and WAIT instructions. The BIT and

RANGE instructions extract either one bit or a range of bits from a given register. The

READ and WRITE instructions allow a process to read and write signals, much as the

process can load or store values to memory. We added the SystemC-specific instructions

to more efficiently execute frequently occurring SystemC primitives and function calls.

Most of the SystemC-specific instructions could have been implemented as a sequence of

the basic computation instructions except for the WAIT instruction. The WAIT instruction

allows a SystemC description to wait a fixed number of simulated time steps. The WAIT

statement is the only supported feature that does not follow the synthesizable SystemC

guidelines, but allows designers to test their SystemC applications with custom bytecode

test benches. The END instruction instructs the emulation engine that a process is done

executing.

3.3.3 USB Download Interface

Our SystemC-on-a-Chip platform supports USB programming via a USB flash drive,

rather than a traditional hardware programmer or USB cable. A traditional hardware

programmer requires non-volatile memory and a removable chip, greatly limiting the

number of supportable development platforms. An alternative programming approach is

to program a device in-system using a USB cable. While eliminating the need for a

programming device, such an approach still requires a PC every time a designer wishes to

load a new SystemC description.

58

Instead, we chose a USB flash drive programming approach, illustrated in Figure

19. A user (such as a student) copies the desired SystemC description (in bytecode

format) onto a USB drive as a file, plugs the drive into the SystemC-on-a-Chip platform,

and presses a button on the platform that downloads the program from the flash drive to

the internal emulation engine. The approach eliminates the need for non-volatile memory

in the development platform. The approach enables loading and changing circuits by

inserting and swapping flash drives, enabling more mobility and portability. The

approach also matches current usage schemes for popular electronic devices, allowing a

beginning student to start programming with minimal effort, and using a familiar

paradigm. The cost is that the SystemC-on-a-Chip platform must contain an internal USB

flash drive reader.

3.3.4 SystemC Emulation Engine

The basic emulation engine supports SystemC bytecode written or generated for the

synthesizable subset of SystemC. We currently do not support higher level features of

SystemC like transaction level and system level modeling because we are presently

targeting SystemC descriptions that could eventually run natively on an FPGA. Figure

20(a) shows the architecture of the basic emulation engine.

The basic emulation is driven by a processing core that runs a lean, event-driven

simulation kernel [48]. Figure 20(b) shows the pseudocode for the event-driven kernel.

For each time step, the event-driven kernel processes a queue of ready-to-run events. An

event is placed on the queue when a signal value is updated and that signal is on the

59

sensitivity list of a process. Each time step might consist of multiple delta time steps, in

which a process may execute multiple times during a time step. After each delta step, the

event kernel updates the signal values, and places any new sensitive processes onto the

event queue.

The signal’s values are located on the system bus in Signal Memory 1 and Signal

Memory 2. Processes and peripherals write to Signal Memory 1, and read from Signal

Memory 2. After each delta step, the event kernel copies the contents of Signal Memory 1

to Signal Memory 2. The advantage of putting the signal memories on the bus is that

peripherals have easy access to the signal values, and gives access to emulation

accelerators. The disadvantage is that multiple peripherals might try to access the signal

memories at the same time as the event kernel, blocking the bus, and degrading emulation

efficiency.

Figure 20: Basic emulation engine. The emulation engine consists of a hybrid event-driven kernel to allow a variety of
different circuit implementations. Circuits can also take advantage of a range of standard peripherals, including lights,

buttons, a UART, and input and output memories.

 UART

 LEDs

 Memory
 Output

 Memory
 Input

 Instruction
 Memory

 Signal
 Memory 1

 Signal
 Memory 2

 USB
 Interface

Standard
Peripherals
supported

Event Kernel

while(1){
 nextTimeStep = 0;
 while(!nextTimeStep){
 if(!queueEmpty()){
 done = 0;
 while(!done){
 processEventQueue();
 }
 update();
 }
 else{
 nextTimeStep = 1;
 }
 }
}

Event kernel
Emulation
Engine

Bytecode VM

(a
)

(b
)

Buttons

Process

The event kernel processes events
for each time step, updates signal
values and event triggers, and
updates the time step

60

The event-driven kernel calls a bytecode virtual machine to execute each event in

the event queue. The bytecode virtual machine supports the SystemC bytecode

instruction set described in the previous sections. Each process is allocated an instruction

memory, register file, and local data memory. The virtual machine also contains proper

hooks to communicate with the standard peripheral and I/O set. We designed the

bytecode virtual machine using standard techniques from [124] to increase the efficiency

of execution.

The emulation engine supports platform I/O and peripheral access. The set of

peripherals includes buttons, LEDs, UART, and input and output memories. We chose

the peripherals to be a representative subset of peripherals that most development

platforms could support. For development platforms with a larger set of peripherals,

emulation designers could easily add extra support. The basic emulation engine supports

SystemC descriptions that implement the interface shown in Figure 21. The description

writer does not have to follow the standard interface, but the standard interface provides a

convenient mapping between description’s signals and the available peripherals.

Figure 21: SystemC-on-a-Chip circuit interface. The emulation engine supports access to multiple peripherals, including
buttons, LEDs, and memory.

 SystemC

Circuit
Cloc
Rese
Butto
uart

Input
Memo
ry

LED
uart

Input Mem

Output Mem

Output Mem

Input Mem

61

3.4 Experiments

We built two complete SystemC-on-a-Chip platforms, and implemented dozens of

SystemC descriptions to demonstrate the applicability of in-system SystemC emulation.

The systems we built are summarized in Figure 22. One platform used the Virtex4 Ml403

FPGA development board, and the other used a Spartan 3E FPGA development board.

On the Virtex4 ML403 FPGA, we built the emulation engine on a PowerPC processor

and used the PLB bus framework to access I/O and peripherals. On the Spartan 3E

FPGA, we built the emulation engine on a Microblaze soft-core processor, using the OPB

bus framework to access peripherals and I/O. The instruction memory, stack, and heap

for the PowerPC based basic emulation engine were all stored in SRAM. In contrast, the

instruction memory, stack, and heap for the Microblaze-based system were all located in

on-chip BRAM. Due to limited BRAM resources, some SystemC descriptions would not

run on the Microblaze-based platform. No SRAM existed on the Spartan 3E platform.

Figure 22: SystemC-on-a-Chip prototypes. Each system differed in size, processor, memory, and number of emulation
accelerators, but each could run the same SystemC bytecode for a given SystemC description.

 Development

Platform
Main

Processor
Bus

Platform
Memory
Location

of
emulation

accelerators

Xilinx Virtex4
Ml403 FPGA

Xilinx
Spartan3E

FPGA

PowerPC

Microblaze

PLB

OPB

SRAM

BRAM

2

1

62

We implemented a number of different circuits in SystemC, including an edge

detector, encryption/decryption applications, various state machines, and several smaller

combinational logic components to exercise the entire SystemC bytecode set. We

implemented the edge detector with two communicating processes in about 200 lines of

SystemC. The encryption/decryption units required about 300 lines of SystemC, and

consisted of five processes. One of the combinational components, a structural

implementation of a 32-bit adder, required 500 lines of SystemC and consisted of 66

processes. The SystemC bytecode compiler compiled each example in seconds, and

generated between 50-2000 bytecode instructions. Figure 23(a) shows a snippet of the

SystemC source code for the edge detection circuit. The edge detection circuit was

written with two processes, one process to gather pixel data from the input memory, and

one process to perform the edge detection and output to the output memory. We

configured each platform to use the output memory as a frame buffer, allowing visual

Figure 23: SystemC experiments. (a) SystemC code for Image Edge Detection. The code took only minutes to create and
compile before being put on a Virtex4. (b) Edge Detection running on a Virtex4. We connected the memory output to a

frame buffer to see the results on a VGA screen.

class EDGE_DETECTOR : public sc_module {
//signal declarations
…
EDGE_DETECTOR() {
 SC_method(mainComp);
 sensitive << dataReady;

 SC_method(getPixel);
 sensitive << clock.pos();

void getPixel(){
 …
 dataReady.write(1);
}

void mainComp(){
 int i, j;
 for(i = 0; i < 3; i++){
 for(j = 0; j < 3; j++){
 sumX = sumX + mem.read()*GX[i][j]
 }
 }
 …

Before During
SystemC Snippet

(a)
(b)

63

inspection of the output on a VGA screen (Figure 23(b)). The edge detection circuit could

process a 128x128 image in approximately 30 seconds on the base emulation engine.

While slow, in an early prototyping scenario, or in a classroom setting, such times might

be acceptable. We also compared the edge detection circuit running on the SystemC-on-

a-Chip platforms to the same SystemC circuit description running on an Intel-based PC

running at 2 GHz. The SystemC edge detection circuit took 0.5 seconds to complete the

same 128x128 image.

We compared a variety of SystemC descriptions on a base SystemC-on-a-Chip

platform on both the Virtex4 Ml403 platform and on the Spartan 3E platform to running a

native application on the underlying platform and to PC simulation. On the Spartan 3E

development platform, the Microblaze system clock was half the speed of the PowerPC

on the Virtex4, but fetched memory more efficiently since the Microblaze had a

dedicated bus to the BRAM instruction memory. In all cases, the basic emulation engine

executed the SystemC descriptions ~100X slower than the executing an implementation

of the application on the native platform and up to 1000X slower than PC simulation. If

we normalize for clock speed since the PC is running several orders of magnitude faster

than the Xilinx platforms, the performance is comparable. In all cases, the SystemC

bytecode was portable, allowing us to write the SystemC application once, and run on

any of the supported platforms. The basic emulation engine has the advantage that many

smaller development platforms could still support its software (like the Spartan 3E

implementation), enabling in-system SystemC emulation for less capable systems, or for

64

systems without FPGA resources. In future chapters, we seek techniques and

architectural enhancements to improve the performance of base SystemC emulation.

65

Chapter 4

SystemC Bytecode Accelerators

4.1 Overview

For the common situation where the SystemC-on-a-Chip platform is implemented on an

FPGA, we’ve developed emulation accelerators that substantially increase the SystemC

emulation speed. Figure 24(a) shows multiple emulation accelerators connected to the

basic emulation engine. Each emulation accelerator runs in parallel to the other emulation

accelerators and the main emulation processor. Figure 24(b) shows the internals of one of

the emulation accelerators. The emulation accelerator consists of a small SystemC

bytecode processor and bus steering logic. The bytecode processor is a modified multi-

cycle MIPS datapath, with connections to a register file and local data memory. The

emulation accelerator can complete most instructions in 3-4 cycles, with the exception of

the READ instruction, which has a nondeterministic execution time since the accelerator

must read data from the system bus. The emulation accelerator is configured as a master

on the system bus to allow the accelerator to read and write the emulation engine’s signal

memories independent from the emulation processor, and as a slave to allow the

emulation processor to command the start of its execution.

66

 The number of emulation accelerators can substantially increase the

performance of the SystemC emulation since each emulation accelerator runs in parallel.

The emulation accelerators do contend for the signal memories, but typical SystemC

behavioral descriptions only read/write signals at the start and end of their descriptions.

The advantages of emulation accelerators increase as the size of the SystemC processes

increase since the emulation accelerator can execute bytecode instructions orders of

magnitude faster than the basic emulation engine can. There are tradeoffs though.

Assuming circuit emulation doesn’t require fast execution, the FPGA area required to

implement emulation accelerators could be allocated for other circuitry, including more

advanced peripherals or I/O. Also, smaller process descriptions may not benefit much

from emulation acceleration, or other SystemC execution times might be perfectly

acceptable in without acceleration.

Figure 24: Emulation accelerators. The emulation accelerator consists of a multicycle MIPs-like datapath than can execute
one instruction in about 3-4 cycles, almost 100X faster than executing the same instructions in the base emulator.

…

Emulation
Engine

Emulation

 Bytecode

RISC
Datapath

Register File

Local Memory

Bus,
start,
load
logic

Emulation accelerators connect
to the system bus, and have
master access to all the system
peripherals

Processor

Peripher
 Memory

(a)
(b)

Bytecode
Processor

Bytecode
Processor

Bytecode
Processor

accelerators

67

Because the SystemC emulation engine benefits from connecting to real I/O

compared to modeled I/O, shown in Figure 25(a and b), another potential drawback of

SystemC in-system emulation is that the ordering of events on the event queue is not

known before runtime, making some existing static acceleration techniques like queue

reordering [82] and process splitting [103] less effective. Figure 25(c and d) shows how

two different input sequences into a SystemC emulation image processing system can

generate two different output sequences, of which only an adaptive mapping of processes

to acceleration engines can guarantee higher emulation performance. The SystemC

Figure 25: SystemC in-system emulation: (a) In-system emulation of a description allows testing with real I/O, thus
creating dynamic test bench input vectors that cannot be analyzed statically. (b) Sample image processing system that
invokes several different filters depending on the input. (c) Statically mapping each process to either software or an
acceleration engine results in widely varied runtimes for different input sequences. (d) Dynamically mapping SystemC
processes in response to the input sequence results in higher performance emulation for all input sequences.

 FPGA

SystemC
Kernel

Memory

System
 I/O

SystemC In-System Emulation

(b)

Input
Sequence 1:

Input
Sequence 2:

Image processing
system

Blur

 Sharp

Edge

Motion Static
Mapping Output Sequence 1

Output Sequence 2

Dynamic
Mapping

Runtime

Output Sequence 1

Output Sequence 2

Dynamically responding to unique
input sequences and mapping
SystemC processes to available
SystemC acceleration engines
results in higher performance
SystemC emulation.

(c)
class

IMAGE_PROCES

SING : public

sc_module {

//signal

declarations

…

(a)

(d)

S

S

S MM

M

M

M

M

M

B

B B E

E

E

E

B B B

B

B

Engine 1

Acceleration Acceleration Engine 2

System
 I/O

68

emulation framework allows for dynamic decisions of whether to execute a process’

bytecode on the microprocessor SystemC kernel, or to load and execute that bytecode on

an acceleration engine. However, acceleration engines are limited, and loading

acceleration engines involves time overhead, so load decisions should be made so as to

minimize total execution time.

Thus, a problem exists as to how to efficiently utilize the finite number of

SystemC acceleration engines to execute a dynamically changing event-driven SystemC

emulation event queue such that the total emulation time is minimized. We define the

online SystemC emulation acceleration problem, and apply online heuristics to

dynamically improve the performance of SystemC emulation.

4.2 Related Work

Improving the performance of event-driven simulations has been extensively researched.

Much research has concentrated on developing parallel frameworks for general event-

driven simulation. Fujimoto [51] presents a comprehensive survey of several parallel

simulation techniques. Jefferson [82] analyzes the critical paths of event-driven

simulations, and discusses techniques to achieve supercritical speedups in simulation.

Das [36] discusses adaptive protocols for parallel simulations.

Other work has focused on specifically improving SystemC simulations. Naguib

[103] automatically splits SystemC processes to prevent unnecessary wake up calls to the

SystemC event kernel. Perez [111] creates an optimized implementation of the SystemC

kernel that utilizes acyclic scheduling. Wang [149] uses compiled simulation to eliminate

69

unnecessary evaluations, and to improve simulation time. Our work focuses on dynamic

SystemC emulation (rather than static SystemC simulation) whose behavior requires

dynamic scheduling techniques to improve performance.

Another area of research combines both of the above approaches to parallelize the

SystemC simulation kernel. Chopard [30] and Combes [32] show how relaxing a number

of constraints on the event queue makes feasible a parallel SystemC event-driven kernel.

Chandran [26] identifies methods to execute the SystemC kernel on simultaneous

multiprocessor machines for faster performance. Our work utilizes FPGA resources to

accelerate the execution of SystemC processes for higher performance emulation.

Dynamic load balancing has been studied extensively in previous works

[61][78][98]. The idea of dynamic load balancing is that migrating processes across a

network from high load hosts to lower load hosts can minimize application execution

time despite overhead in migrating processes between processors. Our online SystemC

emulation acceleration problem can be considered a special case of dynamic load

balancing with heterogeneous processing units and high migration overheads.

Dynamic system optimizations have also been the focus of much research. Balarin

[6] presents a survey of real-time embedded system scheduling, which classifies the

problem into static scheduling and dynamic scheduling. Danne [35] introduced real-time

scheduling algorithms for periodic applications in an FPGA. Ghiasi [53] uses the task

graph model to reorder task execution offline to minimize reconfiguration overhead.

Huang and Vahid [72][73] develop new online heuristics for managing FPGA

coprocessors in a dynamic environment. Noguera [108] proposed dynamic run-time

70

hardware/software scheduling techniques for FPGAs emphasizing dynamic concurrent

task scheduling. Steiger [128] proposed the use of a reconfigurable operating system to

manage dynamically incoming tasks and online scheduling problem. Our work applies

these dynamic techniques to improve the performance of SystemC emulation.

4.3 Online SystemC Emulation Architecture

4.3.1 Base Architecture with Acceleration Engines

A SystemC emulation architecture enables the execution of SystemC descriptions on real

platforms without the need to synthesize/map for the particular platform, by executing an

intermediate form of SystemC called SystemC bytecode. Figure 26 shows a basic

SystemC emulation platform. The platform consists of a main processor that executes the

Figure 26: SystemC emulation platform. A limitation of the SystemC emulation platform is that the acceleration engines
and the SystemC kernel within the emulation platform are connected via a single bus structure, thereby creating a
bottleneck for shared memory usage when multiple processes (p1, p2, p3) are scheduled in parallel, hindering
performance.

 FPGA
�

SystemC
Kernel

Acceleration
Engine 2

�

Acceleration
Engine 1

Memory
p1

p2 p3
�

Syste
m
 I/O

Syste
m
 I/O

71

SystemC kernel, which is a combination of a virtual machine and event-driven kernel.

The SystemC kernel connects to the platform’s peripherals (memories, lights, buttons,

timers, general I/O) through a shared bus, allowing a SystemC description full access to a

variety of peripherals.

For the common situation where the emulation engine is implemented on (or with

access to) an FPGA, the SystemC kernel can offload process emulation to a SystemC

acceleration engine. An acceleration engine, shown in Figure 27(a), consists of a MIPS-

like datapath, communicates with the SystemC kernel via memory-mapped registers, and

executes SystemC bytecode orders of magnitude faster than the SystemC kernel.

Figure 27: SystemC acceleration engines: (a) Internal structure. (b) Direct connection of two SystemC acceleration
engines using a kernel bypass connection. In some situations, bypassing the bus and SystemC kernel can lead to
significant performance benefits for a given SystemC description.

 Acceleration Engine

RISC
Datapath

Register
File

Local
Memory

Bus,
start,
load
logic

Core Acceleration Engine

Kernel Bypass Config

Signal Cache

 Acceleration Engine

Signal Cache

System

The direct connections between the core
acceleration engine and the adjacent signal
cache allow the two acceleration engines to
communicate without using a shared bus
memory

Signals to the main datapath to
communicate with the signal
cache and not the system bus
when configured properly

(a
)

(b
)

…

72

4.3.2 Kernel Bypass

We observed that the SystemC emulation platform possesses a memory bottleneck when

both the main emulation kernel and the SystemC acceleration engines attempt to read and

write the shared signal memories, as highlighted in Figure 26. To mitigate the memory

bottleneck, we introduce kernel bypass connections, which are direct one-way

connections between neighboring accelerators that allow the SystemC accelerators to

communicate without having to read and write their values to shared memories on the

system bus. Figure 27(b) shows the kernel bypass architecture for two SystemC

accelerators. An additional advantage of kernel bypass connections is that the emulation

kernel also reduces some overhead of maintaining the event queue since the writing

accelerator can directly flag the reading accelerator to start execution once the writing

accelerator is done.

To facilitate direct communication between two neighboring accelerators, we add

a SystemC kernel-controlled configuration register and small signal cache. A signal

cache is a small memory data structure that holds a signal identifier, the signal’s value,

and a valid bit. If an accelerator is configured to be a kernel bypass reader, the

acceleration engine will instead first look for a signal value in signal cache prior to

fetching the value from the signal memory on the bus. Similarly, if a SystemC accelerator

is configured as a kernel bypass writer, the SystemC accelerator will write to the

connected accelerator’s signal cache by sending the signal’s ID and its current value. In

contrast to the system bus which can take tens of cycles, the signal cache allows one-

cycle signal writing and retrieval. For each simulated time step, a utilized kernel bypass

73

connection can save between tens and hundreds of cycles, depending on the number of

signals written to and read from.

The signal cache size is currently limited to ten signals. If two processes

communicate with more than ten signals, the two processes must communicate through

the bus-connected signal memories. Processes that communicate with more than ten

signals can still see some speedup because ten read and writes to the system bus are

eliminated every simulated time step.

4.4 Online Acceleration Assignment

4.4.1 Problem Definition

We define the Online SystemC emulation acceleration problem as follows. Given are:

- A process set P = {p1, p2, p3, ..pn} containing the n processes that comprise a

given SystemC description.

- A set of execution times Tp = {tp1, tp2, tp3,… tpn} containing the execution

time of each process i running on the SystemC kernel without communication overhead.

- A set of execution times Tc = {tc1, tc2, tc3...,tcn} for each process i when

running on a SystemC acceleration engine; the times do not include communication

overhead.

- A set of sizes S = {s1 ,s2, s3,…, sn} giving the size of each process i in terms of

number of bytecode instructions..

- The total number of acceleration engines AE in the SystemC emulation

framework.

74

- The time to load one instruction into a SystemC acceleration engine TR.. The

total time to load an acceleration engine with process i can be thus be written as: loading

time(i) = TR*si

The online SystemC emulation acceleration problem must satisfy the following

constraints:

- Processes running on the SystemC kernel and on the acceleration engines may

run in parallel, unless that process is the same process i. For instance, in the queue <p2,

p1, p1, p1, p3>, the three instances of p1 must execute sequentially, but p2 and the first

instance of p1 can run in parallel.

- The SystemC kernel cannot be interrupted to run a process when the SystemC

kernel is loading a process onto an acceleration engine or when the SystemC kernel is

itself running a process.

We define several additional constraints to the online SystemC emulation

acceleration problem that take advantage of the number of kernel bypass connections

within the SystemC emulation framework:

- A set O of process pairs (Oi, Oj) that satisfy the condition that all of the inputs

into Oj are outputs from Oi. These process pairs can be determined statically and sent to

the SystemC kernel at download time

75

- Number of kernel bypass connections: The number of kernel bypass connections

in the SystemC emulation platform

- Kernel bypass connection pairs: For each Kernel bypass connection, there exists

two acceleration engines AEi and AEj that the connection is made up of

- Number of signal connections between each process pair (Oi, Oj)

The dynamic input to the problem is an event queue Q, such as <p2, p1, p4, p2,

p1, p1….>, that lists and orders the process instances that run on the platform for a given

time step.

The Online SystemC Emulation Acceleration problem is defined as an online

problem: For each process in the event queue, using only knowledge of prior and current

processes in the queue, determine whether to load that process into a SystemC

acceleration engine, such that the time for the entire event queue (including future

instances of the process in the queue) is minimized. When a process is already loaded

into a SystemC acceleration engine, we refer to the process as being acceleration engine

resident. The current process is the process that at a given time is to be executed next and

for which the acceleration engine load determination must be made. Thus, the solution to

the online SystemC emulation acceleration problem consists of an acceleration engine

management decision for each process instance in the event queue. Each decision is

either: load, don’t load, or already loaded. For a decision to load, the decision also lists a

process that must be unloaded to make room for the new process being loaded.

76

4.4.2 Communication Overhead

The SystemC accelerators communicate with the SystemC kernel through memory

mapped registers and signal memories, which store the current and next values of each

signal in the SystemC description. We use queuing theory [55] to estimate average

memory access delay, and model memory contention by the M/M/1 queue. The processes

in the SystemC kernel and in the SystemC acceleration engines generate memory access

requests through READ and WRITE bytecode instructions. We define the following:

- Random memory access rate: The random memory access rate is the number of

times a process i reads from memory, where λi is the memory access rate of running

process i.

- Bus service rate: µ. The bus service rate is the number of requests the system bus

can process in a second. E.g. Assuming a 100Mhz memory bus, one access takes 20

cycles, so µ=5M/s.

- Average delay: The average delay is the number of cycles for one memory

access. According to queuing theory, average delay for one access is D=λ/(µ(µ-λ)).

- System delay: delay = Dλ.

4.5 Online Heuristics

4.5.1 Upper and Lower Bounds

An upper bound on total execution time can be determined by running every process on

the SystemC kernel. A lower bound can be determined by assuming every process is

77

preloaded onto an infinite set of existing SystemC acceleration engines, and considering

communication overhead, referred to as the Infinite Accelerators.

4.5.2 Accelerator Static Assignment

To see the advantage of dynamically loading bytecode to the SystemC

acceleration engines for higher performance emulation, we compare to a statically

preloaded approach, which assumes the SystemC acceleration engines are initially loaded

with one process’s bytecode each, and are not reloaded during runtime. At the beginning

of SystemC emulation, the SystemC kernel assigns each acceleration engine a process to

always execute when an instance arrives on the event queue. The acceleration engines are

loaded with the processes that have the largest speedup potential (tpi-tci). Compared to

dynamic techniques, the benefits of static accelerator assignment are one-time

acceleration engine loading, and a simpler emulation event kernel. The drawbacks are

that there might only be a few acceleration engines, and running the rest of the SystemC

processes on the software SystemC kernel could be computationally expensive. An

alternative method for static assignment would have been to utilize profile information to

predict which processes execute most frequently. However, due to simulation

complexity, profiling information was not available.

4.5.3 Greedy Heuristic

A greedy heuristic can be defined that always loads the current process into a SystemC

acceleration engine before executing. If the process is acceleration engine resident, the

78

SystemC kernel just instructs the SystemC acceleration engine to begin executing.

Otherwise, the SystemC kernel randomly chooses an idle SystemC acceleration engine to

load the process’ bytecode instructions. In the case that all the SystemC acceleration

engines are busy running, the emulation kernel will wait until the one of the acceleration

engines becomes idle. The time complexity of the greedy heuristic is O(1). However, the

greedy heuristic may incur lots of loading overhead since it loads a SystemC acceleration

engine with bytecode on every execution. Further, the greedy heuristic attempts to use all

the available acceleration engines, which increases the amount of communication

overhead on the system bus.

4.5.4 Aggregate Gain

We use the aggregate gain (AG) heuristic introduced in [72] to address the online

SystemC emulation acceleration problem. The AG heuristic uses the history of

application executions to attempt to predict future executions and hence to predict when

reconfiguration overhead is worthwhile. The AG heuristic considers reconfiguration and

communication overhead. The basic idea of AG is that we maintain an aggregate gain

table for each process type running in the system. The gain is the time saved by running

the process instance with the accelerator. The AG table gets updated when a new process

arrives. The AG table shows which processes make most of the gains by running in the

SystemC acceleration engine.

Sequences of processes on the event queue often exhibit temporal locality—

recently-executed processes are more likely to execute in the near future than are

79

processes from long ago. A fading factor f is introduced to refresh the AG table. f is

adaptive to the average loading time. The intuition of the loading, replacement and wait

decision is to make the total gain of the acceleration engine resident processes high. Thus

the load, replace and wait decisions will be made only if the decision would not decrease

the total gain resident processes.

We can alter the AG heuristic to support the additional kernel bypass feature. The

modified AG heuristic treats tightly coupled processes as one large process. The large

process takes multiple acceleration engines and we assume the acceleration engines of the

large process must be loaded together. The load, replacement, and wait policies of the

large process are similar to the definitions in original AG heuristic.

4.6 Experiments

4.6.1 Framework

We developed a simulator in C++ to test our heuristics, and applied the simulator to

several SystemC descriptions. We also fully implemented two SystemC emulation

platforms, one on a Xilinx Virtex4 Ml403 development platform, and one on a Xilinx

Virtex5 vlx110t development platform. The SystemC kernels ran on a PowerPC and

Microblaze processor respectively, both operating at 100MHz. The SystemC kernels

communicate to the acceleration engines and the rest of the peripherals through the PLB

bus. The average memory access time is 40 cycles. The SystemC kernel uses a

handshaking protocol over the PLB bus to communicate and load instructions into each

of the acceleration engines. The total time to load one instruction (TR) onto an

80

acceleration engine is approximately three microseconds. The Virtex4 Ml403

development platform could hold one acceleration engine, and the Virtex5 vlx110t

development platform could hold three. For two of the accelerators in the Virtex5

vlx110t, we connected them for kernel-bypassed enabled execution. One accelerator was

configured as a reader, and one was configured as a writer. We chose this configuration

because many of the image processing SystemC circuits mapped to this architecture well.

The kernel bypass circuitry only consumed a few hundred more slices than the core

acceleration engine. The SystemC emulation kernel was written in approximately 2500

lines of C code. The online heuristics consisted of only a few hundred lines of code.

We applied our heuristics to an image filtering system (including a blur filter, an

emboss filter, a sharpen filter, and several implementations of edge detection), a digital

lung model [107], and a reconfigurable radiosity design [7]. We wrote the image filters,

Figure 28: Emulation runtime results of image filtering, lung, and radiosity examples emulated on two different
emulation platforms. AG performs up to 9x faster than software-only emulation, and 5x faster than a statically preloaded
approach.

0

500

1000

1500

2000

2500

3000

Virtex Ml403 Virtex5 VLX110t

M
ill

se
co

n
d

s

Software-only Greedy

Lower bound

Statically
preloaded

AG

5150 4900

(1 Accelerator) (3 Accelerators)

48 32

81

lung model, and reconfigurable radiosity design in SystemC, capturing each design using

multiple processes. We modeled several dynamic scenarios in which the image filters,

lung model, and radiosity design might be used.

For all experiments, because sequences involve some random ordering, we

generated 20 sequences, and report the arithmetic average. The heuristic runtimes were

negligible.

4.6.2 Evaluation

Figure 29 shows total execution times of a suite of SystemC image processing, lung, and

radiosity descriptions running on Virtex4 Ml403 and Virtex5 vlx110t implementations of

the SystemC emulation framework without the kernel bypass mechanism enabled.

For the Virtex4 Ml403 implementation, the statically preloaded accelerator

approach yielded ~1.5x speedup compared to software-only emulation (i.e., only running

on the SystemC kernel and no acceleration engines). The greedy heuristic results in a

slowdown of 50% compared to software-only emulation. This is because the greedy

attempts to reconfigure the accelerators without consideration of the high reconfiguration

cost of downloading new bytecode instructions. The dynamic AG approach yields more

speedup. The execution time AG obtains over software-only emulation and a statically

preloaded approach is 3.5x and 2.3x respectively. AG performs approximately 7x faster

than the greedy heuristic.

For the Virtex5 vlx110t implementation, the statically preloaded accelerator

approach yielded ~1.75x speedup compared to software-only emulation. Compared to the

82

Virtex4 Ml403 implementation which only had one accelerator, the nominal speedup

achieved with the Virtex5’s three accelerators was unexpected, and could have resulted

due to a poor mapping between processes to accelerators. The penalty could also have

been due to increased communication costs on the system bus. The greedy heuristic was

again about 50% slower than software-only emulation because of the high cost to reload

the acceleration engines with new bytecode instructions. The AG heuristic performed 9x,

5x, and 18x better than software-only emulation, statically preloaded, and greedy

solutions respectively. The AG heuristic takes the accelerator reloading cost into account

and thus decided not to reload the accelerators every time there was a new process on the

event queue.

Comparing with the Infinite Accelerators lower bound (i.e., all processes are

accelerated and without the need to reload the bytecode instructions onto the accelerator)

shows that the AG heuristic obtains execution times on average within 15x slower on a

Figure 29: Emulation runtimes without and with kernel bypass using the AG heuristic on the image processing
examples. Kernel-bypass-enabled emulations performed on average 11% better than without kernel bypass, and up to
20% in some examples.

0

2

4

6

8

10

12

14

16

Sobel Blur Sharpen Sobel2 Lung Radiosity

Without kernel bypass With kernel bypass

ms

83

platform with one accelerator because of the high loading time, and 8x slower on a

platform with three accelerators of this lower bound. The lower bound solution does not

need to contend with the high reconfiguration time the other heuristics do. Future work

could look into modifying the architecture for decreased reconfiguration times.

Figure 29 shows the effect of enabling a kernel bypass connection between two

accelerators on the Virtex5 vlx110t emulation platform (the Virtex4 Ml403 could only

hold one acceleration engine, so kernel bypass was non-applicable). On average, the

SystemC examples improved their speedup by 11%. Blur and Sobel2 achieved 20%

speedup with kernel bypass because they contained a few processes that had heavy

communication. Other examples like the Lung and Radiosity only improved by a few

percent. This was because the inter-communication between processes was light. More

kernel bypass connections could increase performance by more significant gains.

84

Chapter 5

Just-in-Time Compilation of SystemC

5.1 Overview

The previous two chapters detailed the SystemC-on-a-Chip framework, enabling portable

execution of SystemC applications on any platform the supports the SystemC emulation

engine, and SystemC accelerators and kernel bypass mechanisms that could substantially

increase the performance of SystemC emulation with dynamic system optimizations.

However, the acceleration engines require FPGA resources. We take a different approach

to speedup, wherein we just-in-time compile the SystemC bytecode into native

instructions of the soft-core processor, as shown in Figure 30(b). Just-in-time compilation

has been used with wide success to speed up emulated commercial applications in the

CLR format (from C#) and Java bytecode, for PC-based platforms [83]. Our work is the

first JIT approach for an FPGA soft-core processor.

More significantly, however, is that JIT for an FPGA soft-core processor provides

even more optimization possibilities than JIT for a traditional processor. The reason is

because the soft-core processor architecture can be changed. As such, we could carry out

an iterative process, whereby after creating an initial JIT compiler, we could analyze

85

system performance to detect the new performance bottleneck. We could then change the

processor architecture in order to alleviate that bottleneck, modify the JIT compilation

accordingly, and repeat until no further improvements were found, as shown in Figure 31.

The resulting JIT compilation, with the architecture containing JIT-aware resources as

illustrated in Figure 16(c), showed substantial further speedups over the original JIT

compilation.

Figure 30: While the performance of the base SystemC emulation engine is acceptable for some applications, for others it
is not (a). Just-in-time compiling the SystemC bytecode to the emulator’s memory improves performance (b), but can be

made to be competitive with custom implementations if the emulation engine is made JIT aware (c).

System
 I/O

System
 I/O

SystemC Emulation
Engine

class
IMAGE_PROCESSIN
G : public sc_module
{
//signal declarations
…
EDGE_DETECTOR()

SystemC Application

Execution
Time

Base Emulation

Regular JIT

w/ JIT-Aware
Resources

Emulator
Memory

Emulator

JIT-Aware
Resources
 Peripherals

(a) Base
Emulation

(c) JIT with JIT-aware
resources

(b) Regular JIT

For some applications, JIT
with JIT aware resources
can result in performance
comparable to custom
implementations

86

5.2 Related Work

There has been much previous work in the field of dynamic binary translation and just-in-

time compilation to improve the performance of software interpretation. Of the many

techniques to improve execution of Java bytecode, just-in-time compilation often

improves execution runtimes to near native speeds [83]. The Transmeta Crusoe

processor [38] dynamically translates x86 code into native VLIW instructions for

improved performance and reduced power. Other architectures, like accumulation-based

computer architectures [84], have also benefited from just-in-time compilation

techniques. Gligor [54] used dynamic binary translation to improve the speed and

flexibility of MPSoC simulations.

There has been an increased amount of work done to improve virtualized software

execution with supporting hardware. Adams [2] presents a survey of techniques for

improving x86 virtualization execution, discussing both software and hardware

optimizations. Rosenblum [117] discusses the advantage of hardware-level virtual

machines, and the need to make them as fast, efficient, and transparent as possible. Enzler

Figure 31: The JIT/architecture codesign process.

JIT compiler
creation

Architecture
refinement

87

[45] uses reconfigurable arrays to virtualize hardware. Bauer [12] uses reconfigurable

arrays to improve the execution time of event-driven simulation.

5.3 Experimental Setup

For the upcoming experiments in this paper, we built three complete SystemC-on-a-Chip

platforms, each with differing memory subsystem implementations, and differing

performance profiles. We built one system on a Xilinx Spartan 3E FPGA platform that

required that the SystemC engine reside in DRAM memory. We built a SystemC engine

on an SRAM-based memory structure on the Virtex4 Ml403 development platform.

Finally, we implemented the SystemC emulation engine on a larger Virtex5 vlx110t, and

shown in Figure 32(a). The Virtex5 implementation also executed from a large SRAM.

To highlight the benefits of the new emulation architecture changes, we built two

versions of each platform, one with the dedicated just-in-time emulation architecture

changes, and one without. Each system is briefly summarized in Figure 32(b). The

emulation architectures were described using approximately 10,000 lines of VHDL. We

wrote the SystemC emulation using approximately 3,000 lines of C. The emulation

architectures were built using Xilinx ISE 11, and the software was compiled using Xilinx

EDK 11.

88

We picked a variety of benchmarks to test our SystemC just-in-time compilation

approach. The benchmarks range from image processing applications like Sobel edge

detection to encryption algorithms like an A5/1 stream cipher. We carefully chose

applications with varied amounts of complexity to show where just-in-time compilation

for SystemC excels and where it doesn’t. To compare the speed of the JIT compiled code

with an “upper bound,” we rewrote each benchmark directly in C code (not SystemC),

performing a manual scheduling of processes so as to eliminate the need for the

scheduling done in the SystemC simulation kernel. The C descriptions are less intuitive

than the SystemC descriptions, and the parallelism in the application is less exposed, but

the C descriptions provide an upper bound as to how fast the SystemC bytecode could

possibly execute on a Microblaze—essentially, the C code strips away all SystemC

overhead and describes just the application code. We compiled the C descriptions directly

to Microblaze machine code using the Xilinx tools and the highest levels of optimization

(O3). We refer to this implementation as native software.

Figure 32: Experimental Prototypes. (a) The Virtex5 vlx110t implementation connected to a large screen buffer for testing
image processing applications. (b) A summary of each experimental system. Each version was built with and without

dedicated hardware to improve the impact of just-in-time compilation of the SystemC bytecode.

 Developme

nt Platform
Main
Processo

Memory
Subsystem

Xilinx Virtex4
Ml403 FPGA

Xilinx
Spartan3E
FPGA

PowerPC

Microblaze
Emulation Engine DRAM

Xilinx Virtex5
vlx110t Microblaze

 JIT Memory BRAM

Emulation Engine SRAM

 JIT Memory BRAM

Emulation Engine SRAM

 JIT Memory BRAM

(a) (b)

89

5.4 Just-in-Time Compilation of SystemC

We began by profiling the SystemC emulator’s execution for the benchmarks. Figure 33

shows, which clearly show that the virtual machine executing on the Microblaze

contributes to most of the execution time, namely 73%; the other contributors relate to

architectural features. The virtual machine’s dominance is due to each bytecode

instruction requiring dozens of Microblaze instructions to execute. Just-in-time

compilation from bytecode instructions directly to Microblaze instructions should thus

greatly decrease that time, because almost all SystemC bytecode instructions can be

translated to just 1 or 2 Microblaze instructions.

5.4.1 Compilation

Just-in-time compilation from the SystemC bytecode to the target platform is

Figure 33: Results of our initial profiling of the SystemC bytecode emulator.

73%

15%

5%
7%

Virtual Machine

Signal Queue
Maintenance

Event Queue
Maintenance

Updating
Memories

90

straightforward. The SystemC just-in-time compilation process consists of three analysis

phases and three translation passes. The first analysis phase determines how many

instructions each source SystemC bytecode instruction will require in the target

architecture. The second analysis phase determines which bytecode registers depend

upon values from previous executions of the process. The third analysis phase determines

which register conventions might be violated by naïvely translated code – for instance,

any registers that must be saved across function calls should not be overwritten.

The first translation pass directly copies bytecode instructions to appropriate

locations in the JIT memory, which can be calculated from the information gleaned in the

first analysis phase. The second pass translates each bytecode instruction, which also

requires information from the first analysis phase (to recalculate relative branches). The

third pass adds a function prologue and epilogue to ensure compliance with the emulation

engine and architecture register conventions, which requires the information from the

latter two analysis phases.

91

5.4.2 JIT Compilation with Dedicated JIT Memory Resources

Unfortunately, straightforward just-in-time translation often results in unimpressive

performance improvements. There are a number of reasons for this, but perhaps the most

obvious is the emulation memory architecture. The entire emulation engine requires a

large instruction memory, heap, and stack, and does not lend itself easily to small, fast

memories (which are often very limited, and sometimes non-existent) Thus, the

emulation engine usually resides in a larger, slower memory (e.g., DRAM, or SRAM).

Naïvely placing the native code resulting from just-in-time compilation back into this

same memory shows performance improvement, but this improvement will be greatly

hampered by memory latency.

Figure 34: Modifications to the SystemC emulation engine that increase the utility of just-in-time compilation. The new
SystemC emulation engine supports a local memory bus with a dedicated JIT memory and a static signal queue for fast

access to commonly executed software operations (a). The new SystemC emulation engine also has a dedicated
emulation memory controller, which offloads costly memory updates from software, and magnifies the impact of just-in-

time compilation

 UART

 LEDs

 Memory
 Output

 Memory
 Input

 Instruction
 Memory

Event Kernel

SystemC Emulation Engine

Bytecode VM

(a
)

Buttons

Process

Read Signal
Memory

Original New Additions

Local Memory Bus

Signal Queue

 Write Signal
Memory

JIT Memory

Emulation
Memory
Controller

 Timer

Fast dedicated
memories directly
connected to local
memory bus
relieve processor
from going through
slower peripheral
bus

Memory controller
connects directly to
signal memories
and signal queue,
allowing for single
cycle and parallel
updates

(b)

92

We observed that since the native code returned by the just-in-time compilation

process is much smaller than the emulation engine needed to execute bytecode, the

SystemC emulation engine would benefit from using a small fast memory dedicated for

storing the just-in-time compiled native code, as shown in Figure 34(a). The dedicated

JIT memory directly connects to the base SystemC kernel via a local memory bus, can

hold small amounts of natively translated SystemC code, and can execute orders of

magnitude faster than the original interpreted SystemC bytecode. The just-in-time

compiled code is also several times faster than translated code executed from the original

slower memory.

We implemented the just-in-time compilation routines in approximately 1,500

lines of C. For our experiments, we assume the emulator can just-in-time compile the

entire SystemC application to the dedicated just-in-time memory. Of course, assuming

enough just-in-time memory isn’t necessarily a constraint as the emulator can fall back

on just-in-time compiling the SystemC bytecode to the larger, slower memory resources

and still see performance improvement. For each example, the emulator just-in-time

compiles the SystemC circuit to the dedicated memory prior to emulation execution. The

time required to just-in-time compile is a one-time cost, and runs in milliseconds, even

for large System C applications. Future work might investigate methods for just-in-time

compiling dynamically as the SystemC application is running.

93

Figure 35 shows the advantages of using just-in-time compilation for SystemC

emulation on the Virtex5 development platform for a number of SystemC applications.

For each example, we compare just-in-time compilation to an implementation of the

SystemC emulation engine implemented entirely in DRAM. We also compare the just-in-

time compiled version to an implementation of the application running natively on the

development platform. The results for the Spartan 3E and Virtex 4 SystemC emulation

implementations were similar to the Virtex5 implementation. Figure 35 shows results

running JIT compilation using dedicated JIT memory resources compared a more

straightforward approach using the platform’s normal resources. On average (geometric

mean), JIT compilation with dedicated resources achieves approximately 4X speedup

compared to base emulation, and 1.6X speedup compared to just-in-time compiling to the

emulator’s same memory resources. For computationally intensive SystemC

applications, like the digital timer, just-in-time compiling to dedicated JIT memory

resources resulted in over 100X speedup. For others, like the electronic lock, the

Figure 35: JIT compilation with dedicated JIT resources performed 4X faster than the base SystemC emulation
platform, yet still fell short of native software implementations by another 10X.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Edg
e

Det
ec

tio
n

Digi
ta

l T
im

er

M
at

rix
 M

ult
ipl

y

Elec
tro

nic
 L

oc
k

A5/
1

Ciph
er

Seq
ue

nc
er

Ave
ra

ge

Application

E
xe

cu
ti

o
n

 T
im

e
(n

o
rm

al
iz

ed
)

Base Emulation

JIT Compile (Same Memory)

JIT Compile (Dedicated JIT)

Native SW

94

speedups we less impressive. While still achieving 1.5X speedup, the electronic lock

lacked computationally challenging routines, meaning other components of the SystemC

emulator became a new bottleneck.

5.4.3 Emulation Memory Controller

Dedicated just-in-time memories improved the performance of SystemC emulation by

over 4X on average. However, the improved performance still fell short of the software

running natively on the development platform by 10X. While this can partly be explained

by the different software implementations required for the native platform (sequential

implementation) compared to the original SystemC implementation (structural and spatial

implementation), a more concerning factor was the overhead the emulation engine

incurred managing queue and memory resources to preserve correctness of the SystemC

application, shown in Figure 33.

To facilitate the described just-in-time compilation techniques, we introduce

several additional architectural changes to the base SystemC emulation engine, shown in

Figure 34. The new architectural changes address the remaining 27% of the software time

spent concerned with updating the read and write signal memories, and maintaining the

signal and event queues, and thus greaten the impact of replacing the just-in-time

compiled SystemC bytecode with the interpreted code of the SystemC virtual machine.

The first change to the SystemC emulation engine is the addition of dedicated fast

memory connected directly to the processor to act as the new signal queue. Original

implementations dynamically managed the signal queue, making unnecessary low-level

95

memory allocation calls. We observed that the signal queue is bound in size by the size of

the read and write signal memories, and thus decided that a statically created memory

would mitigate the effect of dynamic signal queue management. We also observed that

instead of enqueueing and dequeuing signals to and from the signal queue, the emulation

engine only needed to store a signal identifier, reducing the overhead on the bus to which

the signal queue is attached to the processor.

We further observed that signal queue maintenance (15%) and updating

memories (7%) were a series of interleaving function calls that worked with highly

dependent data (updating the write and read signal memories involved enqueuing the

signals that changed values), we could offload the tasks of updating the memories and the

maintenance of the signal queue to a dedicated emulation memory controller. On

completion of a delta time step, the emulation engine kernel commands the emulation

memory controller to update the signal memories and populate the signal queue. The

emulation memory controller iterates over the write signal memory, finds any signals that

have been updated, updates the read memory signal value, and adds the updated signal to

the signal queue. The actions can be pipelined, meaning that the emulation memory

controller can check, update, and enqueue every signal in the system in one pass. For a

typical SystemC application with 40-50 signals, the emulation memory controller can

finish updating all signals in 40-50 cycles. This is in contrast to a software approach

which requires high hundreds-thousands of cycles for the same SystemC application.

96

Dedicated just-in-time memory resources improve performance, but are limited

by software calls to manage queue and memory resources. Fortunately, for FPGA

platforms the software can be replaced by a dedicated signal queue and memory

controller, which can update the signal queue and the signal memories in tens of cycles

(compared with hundreds to thousands). Figure 36 shows the effect of including the

dedicated JIT aware resources into the SystemC emulation architecture. The results are

again shown using the Virtex5 vlx110t as the example development platform. The results

compared just-in-time compilation running in dedicated JIT memory resources with and

without the additional JIT Aware resources. On average, just-in-time compilation with

JIT Aware Resources improved execution times by 10X compared to the base emulation

architecture, and by 2.5X compared to JIT compilation without JIT aware resources.

Again, for computationally demanding applications, JIT compilation with JIT Aware

resources could actually attain better execution times than the native application. This is

Figure 36: JIT Compilation with JIT Aware Resources speeds execution by 10X compared to base emulation, and by 2.5X
compared to JIT compilation without the same resources.

0
10
20
30
40
50
60
70
80
90

Edg
e

Det
ec

tio
n

Digi
ta

l T
im

er

M
at

rix
 M

ult
ipl

y

Elec
tro

nic
 L

oc
k

A5/
1

Ciph
er

Seq
ue

nc
er

Ave
ra

ge

No JIT Aware Resources

With JIT Aware Resources

Native SW

97

due to the fact the computationally demanding SystemC application now runs in local

fast BRAM memories, and the native application still executes in slower memory

resources. For other applications, the speedup isn’t quite as dramatic, but JIT compilation

with JIT Aware resources comes with 4X of native application execution on average.

98

Chapter 6

Just-in-Time Synthesis of SystemC

6.1 Overview

The performance of SystemC emulation can be improved greatly using online bytecode

acceleration and just-in-time compilation techniques, but still pales in comparison to the

potential of native FPGA implementations. While SystemC bytecode accelerators are

able to expose some of the parallelism present in the SystemC application, each process

is still executed temporally, greatly limiting opportunities for high-performance FPGA

speedups (and the reason the SystemC application might have been written in the first

place).

Analogous to Java-like approaches where just-in-time compilation can improve

application execution times by orders of magnitude by a translation of the bytecode to

native platform instructions, the availability of FPGA resources on platforms that support

the SystemC-on-a-Chip framework lend themselves to being utilized for native execution

of the SystemC application.. Figure 37 illustrates just-in-time synthesis of SystemC

applications to a native FPGA implementation.

99

We introduce a transparent, server-side just-in-time synthesis framework to the

SystemC-on-a-Chip framework that can override software emulation of SystemC

applications and instead execute the application natively, yielding orders of magnitude

speedups improvement over software emulation, and faster performance than native PC

simulation. We demonstrate the usefulness of the framework by developing a full

prototype for the Xilinx Virtex4 Ml403 development board using partial reconfiguration.

6.2 Related Work

There has been a large body of work devoted to decompilation. Many efforts used

decompilation to port legacy binaries to updated computer architectures, to convert

Figure 37: Just-in-Time Synthesis of SystemC applications leads to natively executing applications that can run
orders of magnitude faster than baseline simulation and several times faster than PC simulation.

System
 I/O

System
 I/O

SystemC Emulation Engine

Emulator
Memory

Emulator

Peripherals

Development Platform

System
 I/O

System
 I/O

Development Platform

class
IMAGE_PROCE
SSING : public
sc_module {
//signal
declarations
…

SystemC Application

Initially, SystemC
application immediately
runs on SystemC emulation
engine, but slow

After some time, just-in-
synthesis creates a parallel,
natively-executing
implementation, resulting in
dramatic speedups

Before After

100

binaries between two different languages, and to document and maintain applications

written in assembly. Software developers have also used decompilation as a debugging

tool for assembly code, by recovering a high-level representation that is easier to check

for errors. A more complete treatment of decompilation can be found in [31]. We use

decompilation techniques for synthesis first proposed by Stitt [131].

Increasingly powerful FPGA platforms (and more usable tools) have made partial

reconfiguration more attractive and the subject of much research. Horta [71] describes the

use of dynamic plug-ins for FPGAs with partial run-time reconfiguration support. Forin

[132] uses partial reconfiguration to create an extensible MIPS-like processor called

eMips. Emmert [44] uses partial reconfiguration for fault tolerance purposes.

Approaches for dynamic software optimization and binary translation have been

proposed to maintain binary compatibility, to reduce compilation time, and to perform

runtime optimizations. Dynamo [10] is a dynamic optimization approach that profiles an

application during execution to determine frequent paths, optimizes the code for those

paths, and stores the optimized code in a special fragment cache. When software

execution reaches a frequent path, the microprocessor fetches instructions from the

fragment cache to execute the optimized code. FX!32 [28] dynamically translates x86

binaries into Alpha binaries by first emulating the application and profiling to determine

frequent regions that should be translated to native Alpha instructions. BOA [56]

dynamically translates PowerPC instructions into smaller microinstructions that can be

more easily pipelined and scheduled in parallel. BOA also detects frequent paths,

performs path-specific optimizations, and translates paths from PowerPC code into native

101

VLIW code. The IA-32 execution layer for the Itanium microprocessor uses software to

convert IA-32 instructions into native Itanium instructions [11]. Warp processing

[93][94][129][131] has demonstrated the feasibility of performing binary synthesis at

runtime, allowing binary synthesis to also take advantage of runtime information to

optimize hardware.

6.3 Just-in-Time Synthesis

6.3.1 Server-Side Synthesis Framework

We investigated two options for synthesizing SystemC applications native platform

execution. One option is to utilize another local processor within the SystemC-on-a-Chip

framework to perform synthesis, place and route, and mapping for the platform. Lysecky

and Stitt [93][94][131] showed that the computationally complex algorithms used by

synthesis and place and route can be made lean enough to run on a small Arm7 processor.

However, they assumed a simple architecture model with a much-reduced complexity

FPGA platform. Modern FPGAs are so complex that they render on-chip synthesis with a

small embedded processor infeasible, and instead require powerful computing platforms

to perform the synthesis process.

Another option is to use an external server to perform the complex synthesis

process. The server-side approach requires an internet connection, but this is plausible as

most modern FPGAs platforms have existing internet connectivity, or can be

programmed to have such behavior. Figure 38(a) shows server-side synthesis for

SystemC-on-a-Chip. A SystemC application initially runs on the platform using the

102

emulation techniques described in previous chapters. If additional performance is

required, the emulation engine sends the currently executing SystemC bytecode through

the internet connection to a remote server. The remote server converts the SystemC

bytecode to a circuit representation, performs synthesis, place and route, and mapping,

and finally sends the updated bit stream back to the FPGA platform. The new bit stream

overrides execution of the emulation engine, and executes as a native implementation.

The server approach is not limited to an external remote server. The approach also works

in the case where an FPGA platform is directly connected to a PC platform, like Intel’s

QuickAssist Technology, in which case the PC can perform synthesis externally.

There are several advantages to performing synthesis for SystemC applications

running on SystemC-on-a-Chip. The first is performance. After some initial time spent

sending the SystemC bytecode to the server to be converted, synthesized, and sent back,

the SystemC application can potentially run orders of magnitude faster than when

running the base SystemC emulation engine, and also faster than simulating the same

SystemC application on a desktop PC. The second advantage is the synthesis process is

completely transparent to the SystemC application designer. The SystemC application

designer does not to need to use costly, difficult, and hard-to-use synthesis flows that

often differ greatly from traditional compilation flows (of which the SystemC-on-a-Chip

flow follows). Instead, the SystemC application immediately runs on the emulator using a

more traditional compiler, and if needed, will transparently synthesize itself to a circuit

that takes advantage of the available FPGA resources.

103

There are also a several disadvantages to the server-side just-in-time synthesis

approach. One disadvantage is that the server-side synthesis approach can be slow. In

extreme cases, the server may finish generating a native platform after the emulated

circuit has finished executing. Synthesis, place and route, and mapping are complicated

NP complete problems, and often require extensive resources (and time) to complete. For

such situations, the SystemC-on-a-Chip platform would not be able to take advantage of

the native implementation. The server-side approach can be beneficial for long-running

SystemC applications or scenarios where a SystemC application repeatedly executes.

While the first execution instance may not take advantage of the newly-created native

Figure 38: Just-in-Time Synthesis SystemC-on-a-Chip framework. (a) The server responds to requests from
SystemC-on-a-Chip platforms that require native execution speeds. (b) The server decompiles the SystemC

bytecode, recovers the high-level information, and synthesizes a circuit tuned to that platform’s available resources.

(a)

(b)

HW Generation

SystemC Bytecode

Control Flow
Analysis

Data Flow
Analysis

Scheduling

RTL VHDL Code

RTL Synthesis

Partial Bit stream
Generation

Send back updated bit stream

Network

 Emulator
Memory

Emulator

Peripherals

 Emulator
Memory

Emulator

Peripherals

SystemC
Emulation
Engine 1

SystemC
Emulation
Engine 2

…

104

bitstream, repeated executions could immediately take advantage, resulting in on average

high performance SystemC execution. Such cases lend well to a server-side approach.

6.3.2 Decompilation and Synthesis

The server-side synthesis framework requires methods to recover high-level information

from the SystemC bytecode in order to generate a high-performance circuit. With

modifications, we use Stitt’s binary synthesis/decompilation [131] tools to recover and

generate RTL VHDL for the SystemC application. Shown in Figure 38(b), the

decompilation tools perform dataflow and control flow analysis, scheduling, and generate

RTL VHDL to input into commercial synthesis and place and route tools.

The decompilation tools required some modifications. The major modification

required modifying the tools to accept a binary (the SystemC bytecode) that already has

explicit parallel constructs, and maintain those constructs through the optimization

process. For instance, if a SystemC application was written using two explicit processes

with custom communication, the decompilation tools must preserve those connections,

while still correctly optimizing the behavior of each process. A more complete

description of the optimizations performed by the decompiler can be found in [131].

The output of the decompilation framework is RTL VHDL. The VHDL is input

into a commercial synthesis tool framework that generates a partial bit stream. The partial

bit stream is finally sent back to the SystemC-on-a-Chip framework, the bit stream is

downloaded, and begins execution as a custom implementation.

105

6.3.3 SystemC-on-a-Chip Architectural Support

We considered two options on how best to override the emulation engine once synthesis

has completed. The first option is to create a fully custom bit stream that completely

erases the emulation engine architecture and takes control of all of the platform resources

once downloaded. This approach has the advantage that the SystemC application has

access to 100% of the resources on the chip, giving potential for a higher performance

implementation. One disadvantage is the platform must store the emulation engine

framework in memory for additional uses of the platform, or be forced to download the

original bit stream for future uses. Another disadvantage is there is the possibility that the

synthesis job cannot create a custom bit stream for the application, possibly due to area

constraints, timing constraints, etc. in which case it might be more advantageous to

synthesize part of the SystemC application to a custom implementation, and leave the

rest to run on the emulation engine.

We chose an approach where the SystemC emulation engine remains persistent on

the development platform, and is overridden at the right time by a just-in-time synthesis

architecture supported by partial reconfiguration, and shown in Figure 39. For the

common case where the SystemC-on-a-Chip framework is executing on an FPGA

platform, a portion of the FPGA platform is now dedicated to be a partially-

reconfigurable region called the just-in-time synthesis support section. The just-in-time

synthesis support section statically interfaces to the emulation engine, and to a static

multiplexor that multiplexes the control of the output peripherals. On platform

initialization, the just-in-time synthesis support is mostly blank, with the exception of a

106

few control bits that control the multiplexor to choose the emulation engine as having

sole control over the output peripherals, and telling the emulation engine the just-in-time

synthesis section is empty.

The SystemC emulation engine sends a request to the server-side synthesis tool to

create a custom implementation. The server-side synthesis tool is aware of the partially-

reconfigurable configuration, and not only synthesizes a custom implementation of the

SystemC application, but also generates small pieces of control logic that interface with

the SystemC emulation engine, and which switch control of the output peripherals to the

just-in-time synthesis region.

Figure 39: Just-in-Time Synthesis Architectural Support. The partially-reconfigurable region multiplexes the use of
the input and output, and can override the execution of the emulator once programmed.

Development Platform

Emulation Engine Just-in-Time Synthesis Support

Input Peripherals

Output Peripherals Output Peripherals

Select who
controls outputs Output Peripherals

On initialization, just-in-time region is empty, and controls the
mux to allow the emulation engine control of the output
peripherals. After, the new bitstream changes the bit
controlling the mux, giving the just-in-time region

Interface

Partially Reconfigurable
Region

107

The interface between the SystemC emulation engine and the just-in-time

synthesis region serves several purposes. The first is to instruct the emulation engine that

the just-in-time synthesis region is ready to execute (thus stopping the emulation engine).

The second purpose is to transfer a notion of state between the emulated application, and

the newly-created custom implementation ready to run in the just-in-time synthesis

region. Without a transfer of state, the newly-created custom implementation must begin

running, and lose the potential for starting where the emulated application left off. The

just-in-time synthesis region also uses the interface to tell the emulation engine whether it

is emulating all or part of the SystemC application. If the just-in-time synthesis region is

executing the entire SystemC application, the just-in-time synthesis region will take

complete control over the output peripherals, and also minimally communicate with the

emulation engine. If it is only executing part of the SystemC application, the just-in-time

synthesis region registers the correct SystemC processes into the emulation engine so as

to maintain correctness, and to instruct the emulation engine to use the custom

implementations of the desired SystemC processes.

Using the partially-reconfigurable approach, the SystemC emulation engine can

persist in the background, potentially allowing other SystemC applications to run as a

custom implementation uses the partially reconfigurable region. The approach also

allows the server-side synthesis tools to selectively choose how best to use the SystemC-

on-a-Chip platform, either creating full custom versions of the SystemC applications, or

only synthesizing parts, and emulating the rest. The tradeoffs include performance,

complexity of the design, and how many applications the SystemC-on-a-Chip framework

108

can independently support. One disadvantage of this approach (compared to deleting the

emulation engine) is the emulation engine itself is consuming resources that might best

be used by a custom implementation of the SystemC application.

6.4 Experiments

We built a full prototyping framework to test and demonstrate the usefulness of

the just-in-time server-side synthesis framework for SystemC-on-a-Chip. We built our

prototype using the Xilinx Virtex4 Ml403 development board. We used the 9.2 series of

Xilinx’s ISE, EDK, and PlanAhead tools to implement the partially reconfigurable region

for just-in-time synthesis support. We implemented the architectural support for just-in-

time synthesis using an additional several hundred lines of VHDL (mostly for bus macro

instantiation), and a two hundred lines of C for the emulation engine.

We built the server-side framework by modifying Stitt’s binary synthesis

framework to support SystemC bytecode. The original binary synthesis tool was written

using approximately 30,000 lines of code; the additional SystemC bytecode support

required approximately 2,000 extra lines of code. For our experiments, we synthesize the

entire SystemC application, and leave deciding how best to synthesize only parts of the

SystemC application to future work. The binary synthesis tools generated RTL-level

HDL code that served as input into Xilinx’s ISE and PlanAhead tools for synthesis,

placement, routing, and partial bit stream generation. Currently the server-side

framework only supports one synthesis request at a time, but will be augmented to allow

109

for multiple requests in the future. The server-side decompilation framework was built on

a 2GHz PC using 2GB RAM.

We implemented a suite of image processing applications in SystemC, including

an edge detector, an emboss filter, and a sharpening filter. Each image processing

algorithm was implemented using various numbers of processes to test the correctness of

the decompilation framework, and its ability to generate the high performance circuit

implementations given different SystemC implementations. Each SystemC application

was written using the synthesizable subset of SystemC, guaranteeing the decompilation

framework could create a circuit. Future work might investigate decompiling a less-

constrained version of SystemC bytecode

Figure 40 shows a comparison of the speedups achieved by online emulation

acceleration, just-in-time compilation, PC simulation, and just-in-time synthesis

compared to base SystemC emulation. The data shown is for only one of the image

Figure 40: Speedups compared to base SystemC emulation for some common image processing filters. Factoring
out the time required to synthesize the SystemC application, just-in-time synthesis is almost 14,000X faster than

base emulation, and 30X faster than PC simulation

1

10

100

1000

10000

100000

Just-in-Time
Compilation

Online
Acceleration

PC Simulation Just-in-Time
Synthesis

3.3
7.3

422

13,998

110

filters. The data for the other image filters was very similar. As shown in earlier chapters,

just-in-time compilation earns modest speedups compared to base SystemC emulation.

PC simulation is approximately 400x faster than base emulation, but part of this speedup

is due to the disparate clock speeds between the PC (running at 2 GHz) and the base

emulation engine (running at 100 MHz). After just-in-time synthesis, the native SystemC

application runs approximately 14,000x faster than base emulation and approximately

30x faster than PC simulation. The speedup over the base emulation engine is due to a

completely parallel implementation the server created (for each implementation, the

server side decompilation framework was able to recover and create the same circuit that

we hand-created from the same SystemC application). Just-in-time synthesis was 30x

faster than PC simulation because the SystemC application on the PC itself is wrapped

within a simulation kernel that causes slowdown. The 14,000x performance improvement

does assume synthesis took zero time. In all three cases, the decompilation and synthesis

process took approximately 20-30 minutes. In these particular cases, the SystemC

application still ran on the emulation engine until the new bit stream was created. Once

bit stream generation finished, there was a noticeable quantitative and visual difference in

how fast the SystemC-on-a-Chip performed.

111

Chapter 7

Controlling Time with SystemC Emulation

7.1 Overview

Emulation of SystemC applications allow for portable execution over a variety of devices

and platforms, saving time and programming effort, and allowing a designer the

opportunity to create a device-independent FPGA application. An additional advantage of

emulation is the power to start, stop, and control time. Controlling time might allow a

designer to debug a SystemC application in-system, giving access to internal variables,

signals, and state of the SystemC application as it running and connected to real

peripherals. Such control might be beneficial in a number of domains. We will use the

development of physiological models for medical device testing as a case study into the

usefulness of time-controllable SystemC emulation.

Medical device software is commonly developed using one of several approaches.

One approach involves modeling on a PC, shown in Figure 41(a). A designer develops

models for both a medical device, such as a pacemaker or ventilator, and for the

physiological system with which the device interacts, such as a heart or lung. Such a

modeling approach supports rapid device software changes, supports simulations that

112

execute faster (or slower) than real-time, and avoids potential safety issues that could

arise when interacting with an actual physical system.

A second approach, used after or instead of the modeling approach, runs the

medical device software on the actual medical device, which is connected to a physical

mockup on the physiological system. Physical mockups range from simple structures,

such as a balloon representing a lung, to computerized mechanical parts that dynamically

react [Michigan Instruments], that can be set to mimic a range of conditions, and whose

internal sensors can be interfaced to a computer for analysis and debugging.

One disadvantage of interfacing to off-the-shelf physical mockups is the inability

to adapt to new features, especially features not easily mimicked via mechanical means.

Figure 41: Approaches to integrating an embedded device with the physical environment during
design: (a) system model, (b) physical mockup, (c) digital mockup.

Modeling environment (e.g., Matlab, VisSim)

Lung
model

Ventilator
model

(a)

(b)

Physical lungs mockup

(c)

 Ventilator device

Digital lungs mockup

Lung
model

Ventilator device

Physical environment model Device

Analog
connections

Digital
connections

113

For example, a future ventilator may sense human-generated nitric oxide concentrations

(recently discovered to be significant in respiratory issues [120]) and adapt the output gas

mix in response. However, no existing computerized mechanical test lung generates nitric

oxide, nor is it clear how to create one.

An alternative is to connect the actual medical device to a digital mockup of the

physiological system. A digital mockup is a behavioral model that emulates the physical

system. In such a case, the medical device software executes as if it were interacting with

a physiological system, but in fact all interaction is through a digital interface, as in

Figure 41(c). We consider a digital mockup platform with a sensor/actuator bypass

method of integration [122] as shown in Figure 42(a). Under this scheme, the digital

mockup taps directly into the information packets that carry the control and data bits to

and from the device’s sensors and actuators. The digital mockup includes models of the

physiological system, of the physical connections between the device and physiological

system, and of the sensors and actuators. A supervisory system coordinates execution of

the digital mockup and medical device. The sensor/actuator bypass method is in harmony

with methods used in industrial “hardware-in-the-loop” practice today, shown in Figure

42(b). Digital mockups combine the flexibility and faster-than-real-time execution

benefits of PC simulation models with the advantages of developing software on an

actual medical device. Digital mockups are also potentially less costly than physical

mockups, which can cost tens of thousands of dollars.

114

However, no common methodology exists for creating digital mockups. Towards

this end, we sought to develop a general approach for time-controllable digital mockup

execution. Digital mockups can be implemented through a variety of methods and on a

variety of different platforms, trading off performance, complexity, size, and accuracy.

While a medical device software developer may run a digital mockup directly on the

physical development platform for increased performance and/or accuracy, another

approach is to run the digital mockup on top of virtualized platform like an in-circuit

emulator. By varying the rate at which the digital mockup generates samples, the digital

mockup can still run faster than or in real-time to interface with the medical device

software under test. A virtualized environment can also provide built-in and unobtrusive

debug capabilities, allowing the designer to stop, start, and step through the digital

mockup to examine important system variables. The virtualized environment can exploit

Figure 42: Digital mock-up platform: (a) The bypass method of integration taps directly into the digital information
packets that indicate the data/control values to/from the device sensors/actuators, (b) the method matches hardware-in-

the-loop approaches used in industrial practice (figure courtesy of Boeing, 2009).

Actuator

Digital mock-
up platform

Embedded device
– pacemaker,

engine control unit,
etc.

Sensor Input/output
digital leads

USB
port

Physical
phenomena

Processors/FPGAs
inside

(a) (b)

Actual physical
satellite operating

in a lab

115

the digital mockup’s explicit notion of a simulated time step, allowing the designer to

monitor the mockup using time-controllable debug. For example, a medical device

software developer may wish to step through a wheezing lung that just coughed one time

step at a time (physiological models are defined to compute the next system values in

time based on a delta time parameter), observing subtle differences in pressure and

volume in the digital lung that might not easily be observed when running in real-time.

We describe a time-controllable SystemC-on-a-Chip framework that allows a

medical device software developer to interface a medical device to a SystemC-based

digital mockup, and start, stop, profile, and advance execution using explicit time-

granularized debug commands. This is contrasted to a more traditional debugging

approach, where debugging is performed at the instruction granularity, and which does

not include an explicit notion of time. A time-granularized approach is generally more

useful for physiological digital mockups, and provides a more powerful abstraction for

developing and testing medical device software.

7.2 SystemC for Synchronized Physiological Models

There are a number of approaches to capturing and implementing physiological systems

models. Physiological systems are usually first modeled using systems (hundreds or

thousands) of partial and ordinary differential equations. The model can then be captured

for PC execution using a particular programming language, typically an expressive

mathematical language like MML, Matlab, or VisSim.

116

Figure 43: Capturing physiological models in SystemC. (a) Portion of a mathematical model of the human lung. (b)
Description of the model in SystemC. (c) Description using POSIX threads. The POSIX threads approach requires

implementing explicit lock-stepping mechanisms that detract from the model’s readability.

Cbr = Qbr / Vbr
Fbr = (Pair – Pbr) / Rbr
dQbr/dt = Fbr * (Cair + Cbr) + Falv * (Calv – Cbr)

Class model : public sc_module {
 sc_in_clk clock;

 integrator Q_integ;

 sc_signal<sc_uint<32> > Qbr, Qbr_t;
 sc_signal<sc_uint<32> > Cbr, Fbr;

 SC_CTOR {
 Q_integ.clock(clock);
 Q_integ.func(Qbr_t);
 Q_integ.dt(dt);
 Q_integ.out(Qbr);

 SC_METHOD(cbr_func);
 sensitive << clock;
 SC_METHOD(fbr_func);
 sensitive << clock;
 SC_METHOD(qbr_t_func);
 sensitive << clock;
 }

 void cbr_func(void) {
 Cbr = Qbr / Vbr;
 }
 void fbr_func(void) {
 Fbr = (Pair – Pbr) / Rbr;
 }
 void qbr_t_func(void) {
 Qbr_t = Fbr * (Cair + Cbr) + \
 Falv * (Calv – Cbr);
 }
};

int cbr,fbr,qbr_t;
sem_t timestep_done,cbr_done;
sem_t fbr_done,qbr_t_done;

void * Cbr(void * arg) {
 while (1) {
 sem_wait(×tep_done);
 cbr = Qbr / Vbr;
 sem_post(&cbr_done);
 }
}

void * Fbr(void * arg) {
 while(1) {
 sem_wait(×tep_done);
 fbr = (Pair – Pbr) / Rbr;
 sem_post(&fbr_done);
 }
}

void * Qbr_t(void * arg) {
 while(1) {
 sem_wait(×tep_done);
 sem_wait(&cbr_done);
 sem_wait(&fbr_done);
 qbr_t = fbr*(Cair + cbr) +
Falv*(Calv – cbr);
 sem_post(&qbr_t_done);
 }
}

void * ClockTick(void * arg) {
 while(1){
 sem_wait(&qbr_t_done);
 sem_post(&cbr_done);
 sem_post(&fbr_done);
 sem_post(&qbr_t_done);
 sem_post(×tep_done);
 }
}

int main(){
 pthread_t pCbr;
 pthread_t pFbr;
 pthread_t pQbr_t;
 …
 pthread_create(&pCbr);
 pthread_create(&pFbr);
 pthread_create(&pQbr_t);
 pthread_join(pCbr, NULL);
 pthread_join(pFbr, NULL);
 pthread_join(pQbr_t, NULL);

 return 0;
}

(a)

(b) (c)

SystemC
implementation much
closer to the

Extraneous code to
implement
synchronous locksteps
detract from actual
model

117

Another method to capturing physiological systems models is to use SystemC.

SystemC is a set of libraries built on top of the C++ language that provides an event-

driven simulation kernel, allowing a designer to simulate a number of concurrently

executing processes, and which supports precisely-timed communication based on

simulated time. SystemC is a natural fit for capturing physiological systems models for a

number of reasons. The equations that represent most physiological systems are naturally

expressed as a number of concurrently executing interconnected processes that execute in

lockstep. Digital physiological mockups implemented in SystemC have the added

advantage that freely available SystemC simulation environments exist that enable

comprehensive PC testing. Further, the developer can run SystemC on a real development

platform using an in-circuit emulation approach like SystemC-on-a-Chip [Sirowy], with

the advantage that the SystemC-based digital mockup executes with real peripherals, and

with real devices, like medical device platforms.

While solutions can be implemented in other parallel programming paradigms

like POSIX threads or Java threads that also operate with precise timing constraints,

physiological models are more naturally represented in SystemC, where lock-stepped

execution is an intrinsic part of the language. A SystemC description can require less

code, is more readable, and is also more extendable. Figure 43(a) shows a portion of a

human lung model captured with three interconnected equations. Figure 43(b) shows the

SystemC description and Figure 43(c) shows a more traditional POSIX–based parallel

programming description of the model. The POSIX threads approach requires describing

explicit tightly-coupled, time lock-stepping mechanisms that make the description more

118

difficult to read, maintain, and extend. Additionally, there is no clear way to step through

a POSIX implementation at the simulated time level without further introducing

extraneous code into the model. Matlab can also model a number of interconnected

equations using a mathematical approach, but like POSIX and Java descriptions, Matlab

does not support explicit timing constructs, and debugging is still performed using

standard instruction-granularity debug features.

7.3 Related Work

Pimentel and Tirat-Gefen [112] developed real-time digital mockups that interfaced to

medical devices by connecting symmetric D/A (digital-to-analog) and A/D (analog-to-

digital) cards to each side. Previous work by Sirowy [122] focused on modest

modifications to the medical device hardware and software such that a digital mockup

could be connected directly. Sirowy’s approach still allows the addition of D/A and A/D

attachments, but with the added advantage of allowing a designer to completely stay in

the digital domain, and to accommodate situations where D/A or A/D conversions are

complex (e.g., in the case of gas generation or sensing). Other researchers have

developed real-time physiological models [20] with a focus on describing the necessary

architectures to achieve real-time.

Several research efforts have emphasized creating and cataloging detailed

physiological models [79][107][135]. Those models are targeted for PC-based

simulation, yet could be used as a basis for digital mockups. Further, many physiological

119

models are highly complex, often requiring hours or days to simulate a few seconds [96].

Our initial focus is on real-time digital mockups.

There has been much work in the domain of synchronization mechanisms for

distributed systems. Lamport [87] describes methods to order events in a distributed

system. Kopetz [85] also specifies clock synchronization methods, but describes

techniques used for a more general network topology. In contrast, our system consists of

only two directly connected components, and thus is a simpler synchronization problem

because uncertainties in a general network need not be considered

There have been some efforts that focus on making time an explicit first class

entity when designing and programming systems. Lee [90] calls for the need to bring

time to the forefront of programming languages and models, especially with the rise in

cyber physical systems research. Lee [89] presents a taxonomy detailing several timing

properties that should be explicitly expressed in programming languages for timing

oriented behaviors. Benini [14] develops methods for performing time granularity

debugging by calculating time through knowledge of the system’s clock speed and the

number of cycles between breakpoints

7.4 Time-Controllable Digital Mockup Execution

The SystemC-on-a-Chip framework can be augmented to give the developer

unobtrusive time-granularized debug and test capabilities. In contrast to the standard

instruction granularity debugging approaches, the SystemC-on-a-Chip framework can

start, stop, and step a digital mockup’s simulated time, advancing time forward as slow or

120

fast as the developer requires. Figure 44 highlights the differences between instruction

level and time granularity debugging.

Time-controllable SystemC emulation possesses a number of advantages for

digital mockup execution. First, the medical device software developer can control time

by running simulations between the digital mockup and medical device faster than real-

time. Running faster than real-time might allow a developer to simulate a night’s worth

of breathing in just a few hours, or make possible the ability to test several different

control algorithms on the medical device in a timely manner. The ability to run faster

than real-time is of course determined by the delta time step at which the digital mockup

is executing and how powerful the underlying platform is, but for many examples,

running faster than real-time is feasible.

Another advantage is the debugger can step through the execution of the digital

mockup at the level of time granularity the digital mockup computes. Stepping using an

explicit notion of time might allow a medical device software developer to step through a

simulated cough of a digital lung mockup, a heart murmur in a digital heart mockup, or

other anomalies and subtleties that might not otherwise be seen, or easily observed,

executing at faster speeds

121

7.5 Experiments

We conducted several experiments to test the feasibility of capturing digital mockups

using SystemC, interfacing those models using the SystemC-on-a-Chip framework to a

medical device, and testing the ability to control time by configuring faster than real-time

execution and incrementally stepping through time. We built a SystemC-on-a-Chip

framework to run on a Xilinx Virtex5 FPGA platform. We wrote the SystemC-on-Chip

framework in approximately 20,000 lines of C, C++, and VHDL. The main emulation

kernel was built on top of a Xilinx Microblaze processor, with custom bytecode

accelerators [Sirowy] built on the native FPGA fabric for increased performance. We also

Figure 44: Time-Controllable Debugging. In contrast to traditional instruction granularity debugging, time granularity
debugging allows a developer to monitor system variables by explicitly controlling simulated time.

Traditional Instruction
Granularity Debugging

BNE $1 $2 5
ADDI $4 $0 83
ADDI $1 $0 1
J 44
ADDI $2 $0 1
BNE $1 $2 5
ADDI $4 $0 99
ADDI $1 $0 2
J 44
ADDI $2 $0 2
BNE $1 $2 5

Set Break
Step
Step
Step

Set Break

Start

No explicit concept of time,
and not immediately useful for
digital mockup execution

Time Granularity Debugging

Time

Step Set
Break

Step Step

Lung
Pressure

Lung
Volume

Lung
Flow

…

Explicit concept of time, and
useful for discovering subtle
changes and relationships in
digital mockup system variables

vs.

2ms 4ms 6ms 8ms

122

built SystemC-on-a-Chip frameworks for a Xilinx Virtex4 Ml403 platform, and a Xilinx

Spartan 3E platform. The Virtex4 implementation was built on top of a PowerPC-based

system. All of the SystemC-on-a-Chip implementations could execute the same SystemC

bytecode without recompiling for any particular platform.

We described a number of physiological models in SystemC that we obtained

from the NSR Physiome Project. Figure 45 shows a portion of the SystemC code used to

capture a two-compartmental respiratory system, one bronchial compartment and one

alveolar compartment. The respiratory system model computes airway pressure, lung

pressure, flow, and volume values for a healthy human lung at a simulated time step of

approximately 4 milliseconds. The respiratory system was modeled using a series of four

ordinary differential equations, and nine linear equations. We modeled the respiratory

system using approximately 400 lines of behavioral SystemC. The SystemC description

compiled to approximately 500 lines of SystemC bytecode, and compiled through the

SystemC bytecode compiler in less than a second.

123

We executed the digital respiratory mockup on the Xilinx Virtex5 implementation

of the SystemC-on-a-Chip development platform. At full speed, the SystemC-on-a-Chip

platform could execute a full simulated time step in 1.6 milliseconds, or about 3X faster

than real-time. We also modeled an alternate implementation of a lung that computes

Figure 45: SystemC Implementation of a two-compartment respiratory system digital mockup.

#include “systemc.h”

template<int bit = 32>
class integrator : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<32> > dt;
 sc_in<sc_uint<32> > funct;
 sc_out<sc_uint<32> > out;

 sc_signal<sc_uint<32> > reg;

 integrator(sc_module_name n) sc_module (n)
{
 sc_method(process);
 sensitive << clock;
 }
 void process(void) {
 reg = funct.read() * dt.read() + reg;
 out.write(reg);
 }
};

class model : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<32> > qalv, valv, qbr, vbr;
 sc_out<sc_uint<32> > qalv_t, valv_t;
 sc_out<sc_uint<32> > qbr_t, vbr_t;

 sc_signal<sc_uint<32> > pbr, palv, fbr;
 sc_signal<sc_uint<32> > falv, cbr, calv;

 model(sc_module_name n) : sc_module(n) {
 SC_METHOD(pbr_func);
 sensitive << clock;
 //…
 SC_METHOD(qalv_t_func);
 sensitive << clock;
 }

 void pbr_func(void) {
 int COM_BR = 0x100;
 int VBR_0 = 0x9600;
 pbr = vbr.read() - VBR_0 / COM_BR;
 }

 //…

 void qalv_func(void) {
 qalv_t.write(falv * (cbr + calv));
 }
};

class top : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<4> > buttons;
 sc_in<sc_uint<32> > memory_in;
 sc_in<sc_uint<8> > uart_rx;
 sc_out<sc_uint<8> > uart_tx;
 sc_out<sc_uint<32> > fb_h;
 sc_out<sc_uint<32> > fb_v;
 sc_out<sc_uint<32> > fb_data;
 sc_out<sc_uint<4> > leds;

 sc_signal<sc_uint<32> > Qbr_t, Qalv_t;
 sc_signal<sc_uint<32> > Vbr_t, Valv_t;
 sc_signal<sc_uint<32> > Qbr, Qalv;
sc_signal<sc_uint<32> > Vbr, Valv;
 sc_signal<sc_uint<32> > dt;

 model model_1;
 integrator<32> integrator_Qalv;
 integrator<32> integrator_Qbr;
 integrator<32> integrator_Valv;
 integrator<32> integrator_Vbr;

 top(sc_module_name n) : sc_module(n)
 {
 dt.write(0x1);

 model_1->clock(clock);
 model_1->qalv(Qalv);
 model_1->qbr(Qbr);
 model_1->valv(Valv);
 model_1->vbr(Vbr);
 model_1->qalv_t(Qalv_t);
 model_1->qbr_t(Qbr_t);
 model_1->valv_t(Valv_t);
 model_1->vbr_t(Vbr_t);

 integrator_Qalv->clock(clock);
 integrator_Qalv->dt(dt);
 integrator_Qalv->funct(Qalv_t);
 integrator_Qalv->out(Qalv);

 //…

 integrator_Vbr->clock(clock);
 integrator_Vbr->dt(dt);
 integrator_Vbr->funct(Vbr_t);
 integrator_Vbr->out(Vbr);
 }
};

124

concentration, lung mass, flow, bronchial pressure, and alveolar pressure. The system

consisted of four equations, one of which was an ordinary differential equation. We

modeled the system using 600 lines of structural SystemC. The SystemC bytecode

compiler compiled the model to approximately 300 lines of SystemC bytecode. While the

model computed fewer equations than the previous model, the SystemC-on-a-Chip

framework took longer to compute one time step because the model was captured

structurally with more interconnected processes. Figure 46 summarizes the models.

Figure 47 illustrates one of our prototype setups for a ventilator and the

respiratory system digital mockup. The digital mockup communicates to the ventilator

through four dedicated serial connections and one synchronization channel. The

dedicated serial connections bypass the ventilator’s airway pressure, lung pressure, flow,

and volume transducers. The synchronization channel is used to ensure that both models

are sampling at the same frequency. Since the digital mockup can simulate time 3X faster

than real-time when running on the virtualized platform, the medical device and digital

mockup use the synchronization channel to agree on a rate at which both devices operate

Figure 46: SystemC Digital Mockup Implementation Summary. Both respiration models were obtained from the
NSR Physiome Project and manually converted to concurrently executing SystemC implementations.

Digital Mockup # of Eqns. # of ODEs SystemC LOC Simulate Dt Simulated Freq

 Alveolar Bronchial
Lung w/ Gas
Exchange

 First Order Non-
Linear Lung

 13 4 430 2-8 s

 4

~800 Hz

1 570 2-8 s ~600 Hz

(Behavioral)

(Structural)

125

[Sirowy]. The rate at which the devices operate is user-defined by a separate PC-based

debug interface, and shown in Figure 47(a).

We tested the usefulness of the time controllability of the test platform by

developing a prototype PC-based debugging application. The debugger is able to stop,

start, and advance time at the smallest simulated time rate the digital mockup can achieve

(approx 4 milliseconds). Figure 47(b) shows that even with a simple debugging interface

we can step through several steps of lung breathing, monitor pressures, volumes, and gas

concentrations, and also make sure the ventilator software is performing correctly. The

time-controllable debug commands given to the digital mockup propagate to the

ventilator via the synchronization channel.

Figure 47: Medical device(ventilator) and digital mockup(lung) prototype setup. (a)The digital mockup can be time-
controlled using a simple PC-based debug interface. (b)The digital mockup and ventilator communicating digitally.

Digital Mockup

Ventilator

(a)
(b)

Digital Bypass
Connections

126

Chapter 8

SystemC Emulation in the Classroom

8.1 Overview

Computing was originally dominated by desktop and hence data-oriented systems.

However, embedded and hence time-oriented systems, which must measure input events

or generate output events of specified time durations, or must execute at regular time

intervals, are increasingly commonplace. Blinking a light on and off for 1 second

Figure 48: SystemC-on-a-Chip in the classroom.

127

represents a “Hello World” example of a time-oriented system. Time-oriented

programming differs significantly from the more common data-oriented programming,

and developing correct maintainable time-oriented programs is challenging.

Similarly, many embedded systems possess spatial connectivity, wherein

component A is connected to B, component B is connected in component C, etc, and

requires a fundamentally different model and structured approaches for teaching

correctly.

We can address both the spatial and time-oriented requirements of many

embedded systems using SystemC. We present a spatial and time-oriented approach to

teaching embedded systems using SystemC. Our approach involves creating an easy-to-

use front end for the SystemC-on-a-Chip framework for the popular Xilinx Spartan 3E

board (shown in Figure 48), a website with a number of available materials for the

instructor wanting to use the SystemC-on-a-Chip in the classroom, including a course

worth of lab assignments.

8.2 Related Work

Several research projects attempt to improve engineering education. Hodge [70]

introduces the concept of a Virtual Circuit Laboratory, a virtual environment for a

beginning electrical engineering course that mimics failure modes in order to aid students

in developing solid debugging techniques. The environment not only provides a

convenient test environment, but also allows an instructor to concentrate more on

teaching. Butler [22] developed a web-based microprocessor fundamental course, which

128

includes a Fundamental Computer that provides students in a first year engineering

course a less threatening introduction to microprocessors and how to program.

Other researchers have concentrated on developing or evaluating computing

architectures for beginning students or non-engineers. Benjamin [16] describes the

BlackFin architecture, a hybrid microcontroller and digital signal processor. The

architecture provides a rich instruction set based on MIPS with variable width data, and

parallel processing support. Ricks [115] evaluates the VME Architecture in the context of

addressing the need for better embedded system education. The Eblocks project [33]

concentrated on developing sensor blocks that people without programming or

electronics knowledge could connect to build basic customized sensor-based embedded

systems.

A number of real time operating systems have been introduced to provide a higher

level of abstraction between the application software and embedded hardware, including

the open source eCos [42], and VxVorks and RTLinux from WindRiver [152].

There have also been several efforts to create virtual environments of

microcontrollers suitable for running from the convenience of a standard desktop

computer. The Virdes [144] virtual development system provides a virtual prototyping

environment for anyone learning to program using the popular 8051/8052

microcontroller. Virdes ships with several already built layouts to blink LEDs, work with

analog to digital converters, and a virtual UART and terminal. Images Scientific

Instruments [75] developed a virtual system for prototyping PIC microcontrollers, while

129

other work has concentrated on developing virtual peripherals [60] for the AVR

microcontroller.

8.3 SystemC-on-a-Chip Software

8.3.1 Using the SystemC Bytecode Compiler

We considered a few approaches to distributing the SystemC bytecode compiler to

students and teachers. The first approach was to make the SystemC bytecode compiler

Figure 49: Windows-based interface for programming SystemC-on-a-Chip.

Fully
integrated
development
environment

Simple one-click
environment
compiles and
downloads
SystemC
applications

130

source freely available, allowing students and teachers to install the compiler framework

with no restrictions, and the freedom to make changes at their leisure. However, the

SystemC bytecode compiler is currently difficult to install, Linux-based, and not

desirable to setup. We instead chose to wrap the SystemC bytecode compiler framework

in a simple, but full functional Windows interface, shown in Figure 49. The Windows-

based environment showcases a full-featured editor, allowing students to begin coding

immediately. The Windows-based approach is more familiar to most students, and allows

more novice users to quickly begin. The Windows-based environment supports a simple

compile interface, wherein a student simple clicks the big “Compile” button in the middle

of the screen.

In contrast to most integrated development environments wherein the backend

compiler is located on the local machine for which compilation is taking place, we take a

Figure 50: Remote Compilation for SystemC-on-a-Chip.

SystemC-on-a-Chip User

SystemC-on-a-Chip User

SystemC Bytecode Compiler

Network

Server

131

remote compilation approach. Modeled after approaches taken by companies like

Tensilica [136], remote compilation for SystemC-on-a-Chip has a number of advantages,

including a simpler and smaller Windows-based front-end, and the ability to make

transparent updates to the compiler backend. Figure 50 shows the SystemC-on-a-Chip

remote compilation framework. We can currently support dozens of concurrent users,

allowing each to write and compile SystemC code as if the compiler was on the local

machine. Such support enables classrooms of students to work concurrently. Such

support is limited is though, and we are currently investigating approaches to reduce

latency when multiple users begin overloading the compiler server.

8.3.2 Downloading SystemC to Development Platform

We take two approaches to downloading the SystemC bytecode to the development

platform. In a previously explained approach, the user places the SystemC bytecode onto

a USB thumb drive and inserts the thumb drive directly into the platform. The approach

is simple, intuitive, and allows a student to migrate his code to different platforms for

portability purposes. We offer an additional approach using the Windows-based

environment. After successfully compiling a SystemC application, the student has the

option of downloading the SystemC bytecode by accessing a “Download” menu option,

or by pressing the “Download” button on the second tab. Assuming serial connectivity

with the development platform, the Windows-based environment maintains the software

(the emulation engine) and circuitry of the SystemC-on-a-Chip platform and will

download the SystemC bytecode automatically. The approaches are complementary, and

give the user additional options for interfacing with their development platform.

132

8.4 Spatial and Time-Oriented Programming

8.4.1 Course Plan

We previously developed virtual microcontroller [123] technology for the purposes of

teaching structured time-oriented programming to beginning students to complement

traditional data-oriented programming paradigms without having to focus on the

complexities and nuances of real microcontrollers. The SystemC-on-a-Chip teaching

framework focuses on more advanced time-oriented programming while also introducing

the concept of spatial programming to college students. Additionally, the SystemC-on-a-

Figure 51: Time Oriented and Spatial Programming with SystemC. We have developed a complete set of labs and
materials to complement a course in spatial and time-oriented programming.

Example Title Purpose

1 Input/Output with LEDs
Beginning example on
how to write SystemC to
interface with peripherals

2 Seatbelt Warning Light
System

Connecting Components.
Spatial Programming

3 Toggle Switch Introduction to Time-
Ordered Behavior

4 Data Transmission and
Encryption Systems

Introduction to Time-
Interval Behavior

5 Working with an LCD More advanced peripheral
interfacing and time-
interval programming

133

Chip framework gives students access to a number of powerful peripherals often seen in

commercial systems, including LCDs, UARTs, and a video screens. The SystemC-on-a-

Chip teaching approach is complementary to the virtual microcontroller approach, and

could fit well as a more advanced course on embedded systems programming.

8.4.2 Sample Labs

Figure 51 shows a listing of several exercises intended we developed to teach

college students about time-oriented and spatial programming using SystemC, and within

the context of the SystemC-on-a-Chip platform. The listing is part of a complete set of

materials available on http://systemc.cs.ucr.edu intended to give an instructor ample

materials to serve as a basis for time-oriented and spatial programming. The examples

follow a progression that teach students the basics of SystemC, spatial programming,

time-ordered and time-interval programming, and then more advanced programming

concepts. For each example, we introduce a new concept, and how that concept is

implemented using SystemC. For the instructor, we provide our own source code

solution. The source code solution might be used in the classroom showing the students

the particular concept, or may be used to check student solutions in a lab setting. We also

provide a series of additional exercises that further aid understanding in the particular

concept just learned. The additional exercises can be presented to the students in

numerous ways, including homework assignments, extra practice, or as supplemental

laboratories.

134

Chapter 9

Contributions

9.1 Summary

We have demonstrated that SystemC serves as a viable distribution format for portable

FPGA binaries. Combined with a fast emulation framework that dynamically and

transparently optimizes the SystemC application, such a distribution format can attain

high performance and still remain highly portable .

As FPGAs become more common in mainstream general-purpose computing

platforms, distributing high-performance implementations of applications on FPGAs will

become increasingly important. Even in the presence of C-based synthesis tools for

FPGAs, designers continue to implement applications as circuits, due in large part to

allow for capture of clever circuit-level implementation features leading to superior

performance and efficiency. We demonstrated that while the distribution of sequential

code (like C) for FPGA applications worked for 82% of the clever circuits we studied,

many circuits required explicit parallel concepts, and of the 82% that we could capture as

sequential code, 70% required spatially-oriented C code. Clearly the distribution format

135

of the FPGA application should include parallel programming constructs, along with the

already established sequential constructs.

We chose to use SystemC as a possible distribution format for FPGA

applications. SystemC allows description of a digital system using traditional

programming features as well as spatial connectivity features common in hardware

description languages. We described an approach for in-system emulation of SystemC

descriptions. The approach centers around a new SystemC bytecode format that executes

on an emulation engine running on a microprocessor and/or FPGA on a development

board. Emulating SystemC allows a designer to test a circuit design using real

peripherals while eliminating the need for eliminating the need for expensive,

complicated, and often long-running synthesis tools at the cost of slower execution speed

compared to a circuit. We described a full SystemC-on-a-chip framework that includes a

SystemC bytecode compiler, the SystemC bytecode format, emulation engine, and

emulation accelerators. We demonstrated that a number of examples could be written

once in SystemC, and then run unaltered on several prototype platforms from a USB

flash drive.

We observed that with the inclusion of SystemC bytecode accelerators that

SystemC emulation could further benefit by adapting to a dynamically changing event

queue. We defined the Online SystemC Emulation Acceleration problem and applied

several online heuristics to improve emulation performance by 9x over emulating all of

the SystemC on the SystemC emulation kernel, and 5x over statically preloading the

136

acceleration engines. Online heuristics could further speedup emulation by up to 20%

with kernel bypass.

While many SystemC-on-a-Chip implementations benefit from FPGA resources,

which directly affect the use of SystemC bytecode accelerators and their dynamic

management, others do not, and are penalized with slow performance. We introduce JIT

compilation techniques that on average improve the performance of SystemC emulation

by 10x compared to basic SystemC emulation on a Microblaze processor. The speedup

was obtained via a JIT/architecture codesign process wherein the architecture was refined

and JIT compilation modified to yield additional speedups. The net result is that our

SystemC emulator with JIT compilation on a Microblaze processor runs nearly as fast as

C code written for and compiled directly to the Microblaze processor. Such fast

emulation can greatly broaden the usefulness of SystemC emulation.

We demonstrated that the SystemC-on-a-Chip framework works well with

developing digital mockups for medical device testing. Developing medical device

software by interfacing with a digital mockup enables development without costly or

dangerous physical mockups, and enables execution that is faster or slower than real-

time. Developing digital mockups in SystemC has the added advantages that the

description closely models the high level mathematical and physical model, can be tested

extensively with freely available SystemC support libraries, and can interface to real

medical device software through the use of the SystemC-on-a-Chip framework. The

SystemC-on-a-Chip framework enables time-controllable debug features, making

possible the ability to step through a digital mockup’s execution through simulated time.

137

We tested the feasibility of such an approach by modifying the existing SystemC-on-a-

Chip framework to support time-controllable debug, and also tested multiple respiratory

digital mockup examples. We currently are modifying a commercial ventilation system to

interact with SystemC-based digital mockups.

We developed and demonstrated a working framework to allow SystemC to be

taught and used in the college classroom. Our framework includes a networked compiler,

a simple and powerful Windows front end graphical interface, and a series of lessons to

guide the beginning student from beginning SystemC constructs to more advanced

embedded system design.

9.2 Remaining Challenges

We are currently working to improve the SystemC emulation tools in many

respects, including developing new hardware-based emulation architectures, reducing the

footprint of the emulation software, and developing frameworks for a number of different

platforms. Possibly future improvements to the SystemC-on-a-Chip architecture include

migrating the event queue kernel to hardware for improved performance, exacerbating

the speedups seen by both JIT compilation and online SystemC acceleration. Another

future improvement is profile a number of SystemC applications to identify various

topologies of the SystemC bytecode accelerators that would improve SystemC emulation.

We currently have only developed one kernel bypass mechanism, but many such bypass

mechanisms might exist. Eventually, the entire SystemC-on-a-Chip framework might be

an array of connected SystemC accelerators that require no overhead for maintaining

event and signal queues. Another future improvement to the emulation framework is to

138

integrate the JIT compilation framework with the online acceleration management

problem, further increasing the performance of the emulation framework.

Further improvements include supporting a larger set of the SystemC language

(constructs like memories, queues, fifos, etc), as well as higher level programming

paradigms like transaction level modeling (TLM). The SystemC-on-a-Chip framework

should eventually be built for PC-based platforms that already support FPGA additions

(like Intel Quick assist), increasing the utility of such a framework.

139

References

[1] Altera Corp. http://www.altera.com, 2005.

[2] Adams, K. and Agesen, O. 2006. A comparison of software and hardware techniques
for x86 virtualization. In Proceedings of the 12th international Conference on
Architectural Support For Programming Languages and Operating Systems (San
Jose, California, USA, October 21 - 25, 2006).

[3] Anderson, E., Agron, J., Peck, W., Stevens, J., Baijot, F., Komp, E., Sass, R., and
Andrews, D. 2006. Enabling a Uniform Programming Model Across the
Software/Hardware Boundary. In Proceedings of the 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (April 24 - 26, 2006). FCCM

[4] Andrews, D., Sass, R., Anderson, E., Agron, J., Peck, W., Stevens, J., Baijot, F., and
Komp, E. 2008. Achieving programming model abstractions for reconfigurable
computing. IEEE Trans. Very Large Scale Integr. Syst. 16, 1 (Jan. 2008), 34-44.

[5] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and Chow, P. 2004. Reconfigurable
Molecular Dynamics Simulator (April 20 - 23, 2004). FCCM

[6] Balarin, F. , Lavagno, L., and Murthy P. Scheduling for Embedded Real-Time
Systems. IEEE Design and Test of Computers, 1998

[7] Baker, P., Todman, T., Styles, H., and Luk, W. 2005. Reconfigurable Designs for
Radiosity. - Volume 00 (April 18 - 20, 2005). FCCM

[8] Baker, Z. K. and Prasanna, V. K. 2005. Efficient Hardware Data Mining with the
Apriori Algorithm on FPGAs. (Fccm'05) - Volume 00 (April 18 - 20, 2005). FCCM

[9] Baker, Z. K. and Prasanna, V. K. 2006. An Architecture for Efficient Hardware Data
Mining using Reconfigurable Computing Systems. (Fccm'06) - Volume 00 (April 24
- 26, 2006). FCCM

[10] Bala, V., Duesterwald, E., and Banerjia, S. 2000. Dynamo: a transparent dynamic
optimization system. ACM SIGPLAN Notices, Vol. 35, No. 5, pp. 1-12

140

[11] Baraz, L., Devor, T., Etzion, O., Goldenberg, S., Skaletsky, A., Wang, Y., and
Zemach, Y. 2003. IA-32 execution layer: a two-phase dynamic translator designed
to support IA-32 applications on Itanium®-based systems. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pp. 191-201.

[12] Bauer, J., Bershteyn, M., Kaplan, I., and Vyedin, P. 1998. A reconfigurable logic
machine for fast event-driven simulation. In Proceedings of the 35th Annual Design
Automation Conference (San Francisco, California, United States, June 15 - 19,
1998). DAC '98

[13] Beeckler, J. S. and Gross, W. J. 2005. FPGA Particle Graphics Hardware (April 18 -
20, 2005). FCCM

[14] Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., and Poncino, M. 2003.
SystemC Cosimulation and Emulation of Multiprocessor SoC Designs. /Computer/
36, 4 (Apr. 2003), 53-59

[15] Benini, L., Bruni, D., Drago, N., Fummi, F., and Poncino, M. "Virtual in-circuit
emulation for timing accurate system prototyping," in Proc. IEEE Int. Conf. ASIC/-
SoC, 2002

[16] Benjamin, M., Kaeli, D., and Platcow, R. 2006. Experiences with the Blackfin
architecture in an embedded systems lab.. WCAE '06

[17] Bitton, D. , Dewitt, D.J, Hsaio, D.K, and j. Menon. 1984. A taxonomy of parallel
sorting. ACM Comput. Surv. 16, 3 (Sep. 1984)

[18] Bondhugula, U., Devulapalli, A., Dinan, J., Fernando, J., Wyckoff, P., Stahlberg, E.,
and Sadayappan, P. 2006. Hardware/Software Integration for FPGA-based All-Pairs
Shortest-Paths. (April 24 - 26, 2006). FCCM.

[19] Bogdanov, A. and Mertens, M. C. 2006. A parallel hardware architecture for fast
Gaussian Elimination over GF(2). FCCM, pp. 237-248.

[20] Botros, N., Akaaboune, M., Alghazo, J., and Alhreish, M. 2000. Hardware
Realization of Biological Mechanisms Using VHDL and FPGAs

[21] Brown, J.C Parallel Architectures for Computer Systems. IEEE Computer vol 37,
no. 5. pp83-87 1989.

[22] Butler, J. and Brockman, J. Web-based Learning Tools on Microprocessor
Fundamentals for a First-Year Engineering Course. 2003. American Society for
Engineering Education

[23] Cadence Design Systems. http://www.cadence.com/us/pages/default.aspx

141

[24] CatapultC. http://www.mentor.com/products/c-based_design/

[25] Celoxica. http://www.celoxica.com/

[26] Chandran, P., Chandra, J., Simon, B. P., and Ravi, D. 2009. Parallelizing SystemC
Kernel for Fast Hardware Simulation on SMP Machines.

[27] Chang, C., Kuusilinna, K., Richards, B., and Brodersen, R. W. 2003. Implementation
of BEE: a real-time large-scale hardware emulation engine. In Proceedings of the
2003 ACM/SIGDA Eleventh international Symposium on Field Programmable Gate
Arrays (Monterey, California, USA, February 23 - 25, 2003). FPGA '03. ACM, New
York, NY, 91-99

[28] Chernoff, A., Herdeg, M., Hookway, R.,Reeve, C., Rubin, N., Tye, T., Bharadwaj
Yadavalli, S., and Yates, J. 1998. FX!32 a profile-directed binary translator. IEEE
Micro, Vol. 18, Issue 2, pp. 56 – 64.

[29] Cho, Y. H. and Mangione-Smith, W. H. 2004. Deep Packet Filter with Dedicated
Logic and Read Only Memories. (April 20 - 23, 2004). FCCM

[30] Chopard, B., Combes, P., and Zory, J. A Conservative Approach to SystemC
Parallelization. Lecture Notes in Computer Science. Volume 3994. 2006.

[31] Cifuentes, C. 1994. Reverse compilation techniques. Queensland University of
Technology, Department of Computer Science, PhD thesis

[32] Combes, P., Caron, E., Desprez, F., Chopard, B., and Zory, J. 2008. Relaxing
Synchronization in a Parallel SystemC Kernel. In Proceedings of the 2008 IEEE
international Symposium on Parallel and Distributed Processing with Applications

[33] Cottrell, S. and F. Vahid. A Logic Enabling Configuration by Non-Experts in Sensor
Networks. HFC. 2005.

[34] Coware. http://www.coware.com/

[35] Danne, K., Platzner, M. Periodic Real-Time Scheduling for FPGA Computers.
Intelligent Solutions in Embedded Systems, 2005

[36] Das, S. R. 1996. Adaptive protocols for parallel discrete event simulation. In
Proceedings of the 28th Conference on Winter Simulation

[37] Davis, B., Beatty, A., Casey, K., Gregg, D., and Waldron, J. 2003. The case for
virtual register machines. In Proceedings of the 2003 Workshop on interpreters,
Virtual Machines and Emulators (San Diego, California, June 12 - 12, 2003). IVME
'03. ACM, New York, NY, 41-49

142

[38] Dehnert, J. C., Grant, B. K., Banning, J. P., Johnson, R., Kistler, T., Klaiber, A., and
Mattson, J. 2003. The Transmeta Code Morphing™ Software: using speculation,
recovery, and adaptive retranslation to address real-life challenges. In Proceedings of
the international Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization

[39] Diniz, P., Hall, M., Park, J., So, B., and Ziegler, H. 2005. Automatic mapping of C to
FPGAs with the DEFACTO compilation and synthesis systems. Journal on
Microprocessors and Microsystems, Vol. 29, Issues 2-3, pp. 51-62.

[40] Doom, T.; White, J.; Wojcik, A.; and G. Chisholm. 1998. Identifying high-level
components in combinational circuits. Proceedings of the 8th Great Lakes
Symposium on VLSI 1998

[41] Durbano, J. P., Ortiz, F. E., Humphrey, J. R., Curt, P. F., and Prather, D. W. 2004.
FPGA-based acceleration of the 3D finite-difference time-domain method. FCCM.

[42] eCOS. http://ecos.sourceware.org/

[43] Eles, P., Peng, Z., Kuchchinski, K. and Doboli, A. 1997. System level
hardware/software partitioning based on simulated annealing and tabu search.
Journal on Design Automation for Embedded Systems, Vol. 2, No. 1, pp. 5-32.

[44] Emmert, J, and Bhatia, D. Partial Reconfiguration of FPGA mapped designs with
Applications to Fault Tolerance and Yield Enhancement. Lecture Notes in Computer
Science. April 2006

[45] Enzler, R. Plessl, C. and Platzner, M. Virtualizing Hardware with Multi-Context
Reconfigurable Arrays. Lecture Notes in Computer Science. Springer Publishing.
September 2003.

[46] Fin, A., Fummi, F., and Signoretto, M. 2001. SystemC: a homogenous environment
to test embedded systems. CODES, pp 17-22

[47] Fornaciari, W. and Piuri, V. Virtual FPGAs: Some Steps Behind the Physical
Barriers. In Parallel and Distributed Processing (IPPS/SPDP'98 Workshop
Proceedings), LNCS. 1998

[48] French, R. S., Lam, M. S., Levitt, J. R., and Olukotun, K. 1995. A general method
for compiling event-driven simulations. In Proceedings of the 32nd ACM/IEEE
Conference on Design Automation (San Francisco, California, United States, June
12 - 16, 1995). DAC '95. ACM, New York, NY, 151-156

[49] Frigo, J., Gokhale, and M., Lavenier, D. 2001. Evaluation of the streams-C C-to-
FPGA compiler: an applications perspective. FPGA, pp. 134-140

143

[50] Fry, T. W. and Hauck, S. 2002. Hyperspectral Image Compression on
Reconfigurable Platforms. (September 22 - 24, 2002). FCCM.

[51] Fujimoto, R. M. 1989. Parallel discrete event simulation. In Proceedings of the 21st
Conference on Winter Simulation E. A. MacNair, K. J. Musselman, and P.
Heidelberger, Eds. WSC '89.

[52] Genko, N., Atienza, D., Micheli, G. D., Mendias, J. M., Hermida, R., and Catthoor,
F. 2005. A Complete Network-On-Chip Emulation Framework. In Proceedings of
the Conference on Design, Automation and Test in Europe - Volume 1 (March 07 -
11, 2005). Design, Automation, and Test in Europe. IEEE Computer Society,
Washington, DC, 246-251

[53] Ghiasi, S. and Sarrafzadeh, M. 2003. Optimal reconfiguration sequence
management. ASP-DAC '03. ACM, New York, NY, 359-365

[54] Gligor, M., Fournel, N., and Pétrot, F. 2009. Using binary translation in event driven
simulation for fast and flexible MPSoC simulation. In Proceedings of the 7th
IEEE/ACM international Conference on Hardware/Software Codesign and System
Synthesis (Grenoble, France, October 11 - 16, 2009). CODES+ISSS '09

[55] Gross, D., and Harris, C.M. Fundamentals of queueing theory. John Wiley & Sons,
Inc. New York, NY, USA. 1985

[56] Gschwind, M., Altman, E., Sathaye, S., Ledak, P., and Appenzeller., D. 2000.
Dynamic and transparent binary translation. IEEE Computer, Vol. 33, No. 3, pp.54-
59.

[57] Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, A. 2003. SPARK: a high-level
synthesis framework for applying parallelizing compiler transformations. VLSI.

[58] Gupta, S., and G. Demicheli 1991. VULCAN - A System for High-Level
Partitioning of Synchronous Digital Circuits. Technical Report

[59] Hansen, M.C. Yalcin, H. and J.P Hayes, 1999. Unveiling the ISCAS-85
benchmarks: A Case Study in Reverse Engineering . IEEE Design and Test in
Computers. Vol. 12, Issue 3

[60] Hapsim. http://www.helmix.at/hapsim

[61] Harchol-Balter, M. and Downey, A. B. 1997. Exploiting process lifetime
distributions for dynamic load balancing. ACM Trans. Comput. Syst. 15, 3 (Aug.
1997), 253-285

144

[62] Hariri, A., Rastegar, R., Zamani, M. S., and Meybodi, M. R. 2005. Parallel hardware
implementation of cellular learning automata based evolutionary computing (CLA-
EC) on FPGA. FCCM, pp. 311-314.

[63] Haulbelt, C., Teich , J., Richter, K. and Ernst R. 2002. System design for flexibility.
Design, Automation, and Test in Europe (DATE).

[64] Henkel, J. 1999. A low power hardware/software partitioning approach for core-
based embedded systems. DAC, pp. 122-127

[65] He, C., Lu, M., and Sun, C. 2004. Accelerating seismic migration using FPGA-based
coprocessor platform. FCCM, pp. 207-216.

[66] He, C., Zhao, W., and Lu, M. 2005. Time domain numerical simulation for transient
waves on reconfigurable coprocessor platform. FCCM, pp. 127-136.

[67] Hennessy, J. and Patterson, D. Computer Architecture – A Quantitative Approach.
Morgan Kaufman Publishers. 3rd edition. 1996

[68] Hezel, S., Kugel, A., Männer, R., and Gavrila, D. M. 2002. FPGA-Based Template
Matching Using Distance Transforms. (September 22 - 24, 2002). FCCM.

[69] Hoare, C.A. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (Jul. 1961).

[70] Hodge, H. Hinton, H.S, and Lightner, M. Virtual Circuit Laboratory. ASEE.
American Society for Engineering Education. 2000

[71] Horta, E. L., Lockwood, J. W., Taylor, D. E., and Parlour, D. 2002. Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration. In Proceedings
of the 39th Annual Design Automation Conference (New Orleans, Louisiana, USA,
June 10 - 14, 2002). DAC '02. ACM, New York, NY, 343-348.

[72] Huang, C., and Vahid, F. Dynamic Coprocessor Management for FPGA-Enhanced
Compute Platforms. CASES 2008.

[73] Huang, C. and Vahid, F. Dynamic Transmuting Coprocessors. IEEE/ACM Design
Automation Conference. DAC. July 2009.

[74] Huang, Z. and Ercegovac, M. D. 2001. FPGA Implementation of Pipelined On-Line
Scheme for 3-D Vector Normalization. (April 29 - May 02, 2001). FCCM

[75] Images Scientific Instruments. http://imagesco.com

[76] Impulse CoDeveloper. http://www.impulsec.com/

145

[77] Intel QuickAssist Technology
http://www.intel.com/technology/magazine/45nm/quickassist-0507.htm

[78] Ishfaq Ahmad , Arif Ghafoor , Kishan Mehrotra, Performance prediction of
distributed load balancing on multicomputer systems, Proceedings of the 1991
ACM/IEEE conference on Supercomputing,

[79] IUPS Physiome Project. http://www.physiome.org.nz/

[80] James-Roxby, P., Brebner, G., and Bemmann, D. 2004. Time-Critical Software
Deceleration in an FCCM. (April 20 - 23, 2004). FCCM

[81] James-Roxby, P. B. and Downs, D. J. 2001. An Efficient Content-Addressable
Memory Implementation Using Dynamic Routing. (April 29 - May 02, 2001).
FCCM

[82] Jefferson, D. and Reiher, P. 1991. Supercritical speedup. In Proceedings of the 24th
Annual Symposium on Simulation Annual Simulation Symposium. IEEE 159-168

[83] Kazi, I. H., Chen, H. H., Stanley, B., and Lilja, D. J. 2000. Techniques for obtaining
high performance in Java programs. ACM Comput. Surv. 32, 3 (Sep. 2000), 213-240

[84] Kim, H. and Smith, J. E. 2003. Dynamic binary translation for accumulator-oriented
architectures. In Proceedings of the international Symposium on Code Generation
and Optimization: Feedback-Directed and Runtime Optimization (San Francisco,
California, March 23 - 26, 2003).

[85] Kopetz, H. and Ochsenreiter, W. 1987. Clock synchronization in distributed real-
time systems. IEEE Trans. Comput. 36, 8 (Aug. 1987), 933-940

[86] Krueger, S. D. and Seidel, P. 2004. Design of an on-line IEEE floating-point
addition unit for FPGAs. FCCM, pp. 239-246.

[87] Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (Jul. 1978), 558-56

[88] Lee, D., Luk, W., Villasenor, J., and Cheung, P. Y. 2003. A hardware Gaussian noise
generator for channel code evaluation. FCCM.

[89] Lee, E. Computing Needs Time. Communications of the ACM. May 2009. Vol 52.
Number 5.

[90] Lee, I. Davidson, S., and Wolfe, V. Motivating Time as a First-Class Entity.
Technical Report MS-CIS-87-54. Department of Computer and Information Science.
University of Pennsylvanis, Philadelphia, PA. Aug 1987

146

[91] Levine, B. A. and Schmit, H. H. 2003. Efficient Application Representation for
HASTE: Hybrid Architectures with a Single, Transformable Executable. FCCM.
IEEE Computer Society, Washington, DC, 101

[92] Levis, P. and Culler, D. 2002. Maté: a tiny virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95

[93] Lysecky, R., Vahid, F. and Tan, S. Dynamic FPGA Routing for Just-in-Time FPGA
Compilation. Design Automation Conference (DAC), June 2004, pp. 954-959

[94] Lysecky R., Cotterell, S., and Vahid, F. A Fast On-Chip Profiler Memory.
IEEE/ACM Design Automation Conference, June 2002, pp. 28-33

[95] Mahmoud, W. H., Haggard, R. L., and Abdelrahman, M. 2001. Hardware
Implementation of Automated Sensor Self-Validation System for Cupola Furnaces
(April 29 - May 02, 2001). FCCM.

[96] MedGadget Internet Journal. 2008. Supercomputer Creates Most Advanced Heart
Model.
http://medgadget.com/archives/2008/01/worlds_biggest_heart_model_simulated_1.h
tml

[97] Message Passing Interface Standard. http://www.mcs.anl.gov/research/projects/mpi/

[98] Min-You Wu. On runtime parallel scheduling for processor load balancing, IEEE
TPDS 1997

[99] Mitra, T. and Chiueh, T. 2002. An FPGA Implementation of Triangle Mesh
Decompression. (September 22 - 24, 2002). FCCM.

[100]Moore, N., Conti, A., Leeser, M., and King, L. S. 2007. Writing Portable
Applications that Dynamically Bind at Run Time to Reconfigurable Hardware.
FCCM. IEEE Computer Society, Washington, DC, 229-238

[101]Moscola, J., Lockwood, J., Loui, R. P., and Pachos, M. 2003. Implementation of a
Content-Scanning Module for an Internet Firewall (April 09 - 11, 2003). FCCM

[102]Moy, M., Maraninchi, F., and Maillet-Contoz, L. 2005. Pinapa: an extraction tool
for SystemC descriptions of systems-on-a-chip. In Proceedings of the 5th ACM
international Conference on Embedded Software (Jersey City, NJ, USA, September
18 - 22, 2005). EMSOFT '05. ACM, New York, NY, 317-324

[103]Naguib, Y. N. and Guindi, R. S. 2007. Speeding Up SystemC Simulation through
Process Splitting. DATE

147

[104]Najjar, W., Böhm, W., Draper, B., Hammes, J., Rinker, R., Beveridge, R.,
Chawathe, M., and Ross, C. 2003. From algorithms to hardware -- a high-level
language abstraction for reconfigurable computing. IEEE Computer, Vol. 36, Issue
8, August 2003, pp.63-69

[105]Nakamura, Y., Hosokawa, K., Kuroda, I., Yoshikawa, K., and Yoshimura, T. 2004.
A fast hardware/software co-verification method for system-on-a-chip by using a
C/C++ simulator and FPGA emulator with shared register communication. In
Proceedings of the 41st Annual Conference on Design Automation (San Diego, CA,
USA, June 07 - 11, 2004). DAC '04

[106]Nallatech. http://www.nallatech.com/

[107]NSR Physiome Project. http://nsr.bioeng.washington.edu/.

[108]Noguera, J., Badia, R.M. Dynamic run-time HW/SW scheduling techniques for
reconfigurable architectures. CODES-ISSS, 2002

[109]OpenCollector. http://opencollector.org/news/Bitstream/

[110]Panel on “Programming Standards for FPGAs in High-Performance Computing
Applications.” Supercomputing Conference, 2005.

[111]Pérez, D. G., Mouchard, G., and Temam, O. 2004. A New Optimized Implemention
of the SystemC Engine Using Acyclic Scheduling. DATE 2004

[112]Pimentel, J. and Tirat-Gefen, Y. 2006. Hardware Acceleration for Real-time
Simulation of Physiological Systems. EMBS. pp 218-223

[113]Plessl, C. and Platzner, M. 2002. Custom Computing Machines for the Set Covering
Problem (September 22 - 24, 2002). FCCM.

[114]Poletto, M. and Sarkar, V. 1999. Linear scan register allocation. ACM Trans.
Program. Lang. Syst. 21, 5 (Sep. 1999), 895-913

[115]Ricks, K. G., Jackson, D. J., and Stapleton, W. A. 2005. An evaluation of the VME
architecture for use in embedded systems education. SIGBED Rev. 2, 4 (Oct. 2005),
63-69.

[116]Rissa, T., Donlin, A., and Luk, W. 2005. Evaluation of SystemC Modelling of
Reconfigurable Embedded Systems. In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 3 (March 07 - 11, 2005). Design,
Automation, and Test in Europe. IEEE Computer Society, Washington, DC, 253-258

[117]Rosenblum, M. 2004. The Reincarnation of Virtual Machines. Queue 2, 5 (Jul.
2004), 34-40.

148

[118]Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. K. 2006.
Hardware/software approach to molecular dynamics on reconfigurable computers.
FCCM, pp. 23-34.

[119]SGI Altix. http://www.sgi.com/products/servers/altix/

[120]Shin, H. and George, S. Impact of Axial Diffusion on Nitric Oxide Exchange in the
Lungs. Journal of Applied Physiology. 2002

[121]Sidhu, R. and Prasanna, V. K. 2001. Fast Regular Expression Matching Using
FPGAs. (April 29 - May 02, 2001). FCCM

[122]Sirowy, S., Givargis, T. and Vahid, F. Digitally-Bypassed Transducers: Interfacing
Digital Mockups to Real-Time Medical Equipment. IEEE Engineering and Biology
Society (EMBS). 2009. Minneapolis

[123]Sirowy, S. Sheldon, D., Givargis, T. and Vahid. F. Virtual Microcontrollers.
SIGBED Review 2009.

[124]Smith, J. and Nair, R. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan-Kaufman Publishers. 2005

[125]Sourdis, I. and Pnevmatikatos, D. 2004. Pre-Decoded CAMs for Efficient and High-
Speed NIDS Pattern Matching. (April 20 - 23, 2004). FCCM

[126]Srinivasan, V., Radhakrishnan, S., and Vemuri, R. 1998. Hardware/software
partitioning with integrated hardware design space exploration. DATE, pp. 28-35

[127]Stark, R., Schmid, J, and Borger, E. Java and the Virtual Machine- Definition,
Verification, and Validation. 2001

[128]Steiger, C., Walder, H., Platzner, M., and Thiele, L. 2003. Online Scheduling and
Placement of Real-time Tasks to Partially Reconfigurable Devices. RTSS 2003

[129]Stitt, G., Vahid, F., McGregor, G., and Einloth, B. 2005. Hardware/software
partitioning of software binaries: a case study of H.264 decode. CODES/ISSS, pp.
285-290

[130]Stitt, G., And F. Vahid. 2006. A Code Refinement methodology for performance-
improved synthesis from C. ICCAD

[131]Stitt, G. and Vahid, F. Binary Synthesis. ACM Transactions on Design Automation
of Electronic Systems (TODAES), Vol. 12 No. 3, Aug 2007

149

[132]Sukhwani, B., Forin, A., and Pittman, R. N. 2008. Extensible On-Chip Peripherals.
In Proceedings of the 2008 Symposium on Application Specific Processors (June 08
- 09, 2008). SASP. IEEE Computer Society, Washington, DC, 55-62.

[133]SystemC. http://www.systemc.org

[134]SystemC Synthesizable Subset. http://www.systemc.org

[135]Tawhai, M., and Ben-Tal, A. 2004. Multiscale Modeling for the Lung Physiome.
Cardiovascular Engineering: An International Journal, Vol. 4, No. 1., March 2004.
pp 19-26

[136]Tensilica Inc. http://www.tensilica.com/

[137]Thomas, D. B. and Luk, W. 2006. Efficient Hardware Generation of Random
Variates with Arbitrary Distributions. (Fccm'06) - Volume 00 (April 24 - 26, 2006).
FCCM

[138]Tripp, J. L., Mortveit, H. S., Hansson, A. A., and Gokhale, M. 2005. Metropolitan
road traffic simulation on FPGAs. FCCM, pp. 117-126.

[139]Tsoi, K. H., Lee, K. H., and Leong, P. H. 2002. A Massively Parallel RC4 Key
Search Engine. (September 22 - 24, 2002). FCCM.

[140]Tsoi, K. H., Leung, K. H., and Leong, P. H. 2003. Compact FPGA-based True and
Pseudo Random Number Generators. (April 09 - 11, 2003). FCCM.

[141]Verilog Specification. http://www.verilog.com/VerilogBNF.html

[142]VHDL Specification Standard. http://www.vhdl.org/

[143]Villarreal, J., Park, A., Najjar, W. and Halstead R. Designing Modular Hardware
Accelerators in C With ROCCC 2.0, in The 18th An. Int. IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), Charlotte, NC, May 2010

[144]Virdes Development System. http://avoron.com/index.php

[145]Vuletic, M., Pozzi, L., and Ienne, P. 2004. Virtual Memory Window for a Portable
Reconfigurable Cryptography Coprocessor. (April 20 - 23, 2004). FCCM

[146]Vuletic, M., Pozzi, L., and Ienne, P. 2005. Seamless Hardware-Software Integration
in Reconfigurable Computing Systems. IEEE Des. Test 22, 2 (Mar. 2005), 102-113

[147]VmWare. http://www.vmware.com

150

[148]Wake, H. A. and Buell, D. A. 2003. Congruential Sieves on a Reconfigurable
Computer. (April 09 - 11, 2003). FCCM

[149]Wang, Z. and Maurer, P. M. 1990. LECSIM: a Levelized event driven compiled
logic simulation.). DAC '90

[150]Wang, X. and Nelson, B. E. 2003. Tradeoffs of Designing Floating-Point Division
and Square Root on Virtex FPGAs. (April 09 - 11, 2003). FCCM

[151]Whitton, K., Hu, X. S., Yi, C. X., and Chen, D. Z. 2006. An FPGA Solution for
Radiation Dose Calculation. (April 24 - 26, 2006). FCCM

[152]WindRiver Systems. http://www.windriver.com/

[153]Xen. http://www.xen.org

[154]Zhang, Y. and S.Q Zheng. 1995. Design and analysis of a systolic sorting
architecture. SPDP. IEEE Computer Society, Washington, DC, 652

[155]Ziegler, H., So, B., Hall, M., and Diniz, P. C. 2002. Coarse-Grain Pipelining on
Multiple FPGA Architectures (September 22 - 24, 2002). FCCM

