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As FPGAs become more common in mainstream general-purpose computing 

platforms, capturing and distributing high-performance implementations of applications 

on FPGAs will become increasingly important. Even in the presence of C-based synthesis 

tools for FPGAs, designers continue to implement applications as circuits, due in large 

part to allow for capture of clever spatial, circuit-level implementation features leading to 

superior performance and efficiency. We demonstrate the feasibility of a spatial form of 

FPGA application capture that offers portability advantages for FPGA applications 

unseen with current FPGA binary formats. We demonstrate the portability of such a 

distribution by developing a fast on-chip emulation framework that performs transparent 

optimizations, allowing spatially-captured FPGA applications to immediately run on 

FPGA platforms without costly and hard-to-use synthesis/mapping tool flows, and 

sometimes faster than PC-based execution. We develop several dynamic and transparent 

optimization techniques, including just-in-time compilation, bytecode acceleration, and 

just-in-time synthesis that take advantage of a platform’s available resources, resulting in 
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orders of magnitude performance improvement over normal emulation techniques and 

PC-based execution.  
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Chapter 1  

Introduction 

FPGAs (field-programmable gate arrays) support a new form of software whose order of 

magnitude speedups can enable a class of new high-performance embedded applications 

not otherwise feasible. However, unlike microprocessor software, two problems severely 

limit FPGA adoption, and thus prevent the appearance of a range of useful embedded 

applications. The first problem is that of a highly specialized design process for FPGAs 

that differs greatly from microprocessor software design, a problem that has been 

intensively studied by researchers and for which commercial solutions are beginning to 

appear. The second problem is that FPGA binaries are presently intricately coupled with 

specific FPGA devices, and cannot be ported across devices or migrated to newer device 

versions the way that microprocessor binaries can. 

FPGAs implement circuits, characterized through their spatial connectivity: 

component A is connected to B, which is connected to C, etc. Each component computes 



2 

in parallel with all the other components, of which there may be thousands. In contrast, 

microprocessors implement sequential programs, characterized by their serial ordering of 

computations as a sequence of instructions. It is the parallelism, from the task level down 

to the bit level, that contributes to FPGAs executing certain computations orders of 

magnitude faster than microprocessors. 

Figure 1 illustrates a computation involving 10 multiplications and additions, 

which might require 30 to 100 clock cycles to execute on a microprocessor, but could 

execute in just 1 or 2 clock cycles on an FPGA if enough resources existed. Many 

embedded system applications are especially amenable to computation speedup from 

FPGAs. For example, an image processing application may search a camera-provided 

image for specific objects, such as a tank, a person, or even a specific person’s face. 

Algorithms for such applications may identically search local image portions and then 

hierarchically compose results – those local search tasks are typically highly-

parallelizable, and hence image processing algorithms may execute hundreds of times 

Figure 1:  FPGAs enable parallel computation. (a) A multiply-accumulate computation, requiring perhaps 30-100 clock 
cycles on a microprocessor (b) but just 1 or 2 clock cycles on an FPGA. 

for i in 0 to 9 loop 
  a = a + c[i]*M[i] 
end loop; 

(a) 

(b) 

M0 M1 M9 

… 

c0 c1 c9 

a 

* * * 

+ + 

+ 
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faster on an FPGA than on a microprocessor. Likewise, highly parallelizable subtasks 

exist in other common embedded applications that involve processing streams of video, 

audio, speech, and other data. Sample domains include television set-top boxes, security 

cameras, medical imaging and diagnosis equipment, contraband detection systems at 

locations like airports or borders, fingerprint recognition, speech understanding, and a 

wide range of military applications. Extensive previous work has shown the speedup 

advantages of FPGA, typically 10x to 100x, for a wide range of embedded applications 

[REFS]. Such order-of-magnitude speedups may not just be a change in speed, but rather 

a “change in kind,” as von Neumann originally described the impact of computers over 

existing desktop calculators, enabling applications not before possible (i.e., the 

applications enabled by a computer’s speed far exceed categorization as that of merely a 

fast desktop calculator). 

One recognized problem preventing FPGA adoption is the different, and more 

complex, design flow for FPGAs compared to that for microprocessors. The typical 

design flow requires FPGA users to describe the desired circuit in a hardware description 

language (HDL), such as VHDL or Verilog, and to use special FPGA-vendor-provided 

compilers (known as synthesis tools) that convert HDL descriptions to device-specific 

FPGA binaries. In contrast, microprocessor users utilize “standard” programming 

languages like C, C++, or Java, and utilize robust high-quality compilers and integrated 

development environments (IDEs) typically developed by third-party vendors who often 

specialize in such tools. The massive microprocessor hardware, applications, and tools 

industries, whose importance need not be stated, have been strongly catalyzed by the 
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separation of architecture from function enabled by the concept of microprocessor 

instruction sets, enabling a standard microprocessor binary. A standard microprocessor 

binary is a binary written using instructions of an instruction set, such as an x86 or ARM 

processor instruction set, that can execute on a variety of existing and evolving versions 

of a microprocessor, leading to benefits and innovations in the creation of architectures, 

tools, and applications. 

Today, software for FPGAs does not benefit from the standard binary concept. 

Instead, software is compiled by FPGA-vendor-provided tools (typically for free as a 

means of selling hardware devices), into a proprietary binary that is intricately bound to a 

specific device. A vendor may offer dozens or hundreds of different devices – Xilinx for 

example presently supports approximately 100 devices. A binary created for one device 

cannot run on any other device. The situation hampers development of architecture, 

software, and tools, and thus the widespread use of FPGAs for embedded computing 

platforms. 

It’s natural to ask why industry has not already developed a standard binary 

concept, if the concept would be so useful. In fact, we do believe that such a concept 

would eventually begin to evolve over the coming 10-20 year period, with small 

bitstream portability techniques accumulating into something akin to a standard binary. 

The lack of portable binaries is becoming recognized as a problem hampering FPGA 

adoption. For example, an FPGA panel at Supercomputing 2005 noted: “Most 

applications outlive the hardware. If one is going to invest in an [FPGA] accelerator, 

what are the options when the accelerator is obsolete? It’s a very real issue” [110]. 
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Extensive discussions regularly appear in the newsgroup comp.arch.fpga, and designers 

have organized to try to make FPGA internal architectures more open (e.g., [109]). 

A standard binary concept for FPGAs will certainly incur performance and size 

overhead compared to the current desktop FPGA CAD approach. Yet, a standard binary 

concept for FPGAs may catalyze the FPGA hardware, applications, and tools industries, 

similar to how it catalyzes the microprocessor domain, thus compensating for the 

incurred overhead. Furthermore, a standard binary for FPGAs that seamlessly integrates 

with that for microprocessors, may catalyze incorporation of FPGAs into the massive 

established microprocessor industry, whose hardware and software revenues and number 

of application developers tower over those for FPGAs by two orders of magnitude. The 

net result would be the widespread use of FPGAs, especially in embedded systems, 

whose applications are particularly amenable to FPGA speedup, and hence the 

appearance of high-performance embedded applications that would otherwise not be 

developed due to the difficulty of utilizing FPGAs. 

We envision opportunities for a portable FPGA distribution format that rides on 

the success of the “write once, run everywhere” programming paradigm of interpreted 

languages like Java and C#, wherein a designer captures a design in a high level 

language, and any computing platform that supports a virtual machine for that language 

can execute that application. At the expense of initial performance, virtual machine 

technology (like Java’s JVM) enables great portability, and is promising as the 

foundation for a portable FPGA binary. We introduce tools and techniques for an 
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emulation framework that allows for portable FPGA binary execution which we call 

SystemC-on-a-Chip. 

This dissertation can logically be broken into three distinct sections. The first 

section only includes Chapter 2, and investigates spatial programming and the proper 

programming constructs and requirements to facilitate a standard FPGA distribution 

format, and the reasons for choosing SystemC as a possible distribution language.  The 

second section comprises Chapters 3, 4, 5, and 6, and describes tools, frameworks, and 

experiments to enable the emulation of applications developed in SystemC. Finally, the 

last section, comprising Chapters 7 and 8, investigate additional uses of the SystemC-on-

a-Chip framework. 

 In Chapter 2, we present an investigation into the proper constructs and 

languages required to facilitate a portable distribution format for FPGA-based 

applications. We present a study entitled “C is for Circuits” that closely studied 70 

custom-created, clever circuits and attempted to capture those circuits in a sequential 

language such that a standard C-to-gates synthesis tool could recreate the original custom 

circuit. Our study complements the question asked by many researchers on whether 

sequential code (like C) can be analyzed and translated into a high performance circuit. 

Our study showed that while many custom-created circuits could actually be captured 

using a sequential language, others could not readily be translated and relied on explicit 

parallel concepts. Of those that could be translated to a sequential language, many 

required a radical algorithm change to facilitate synthesis. We thus determined that a 

portable distribution format would require both temporal and spatial constructs.  We then 
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investigate the requirements of a language suitable for spatial capture of FPGA 

applications. We investigate the feasibility of using popular parallel programming 

frameworks like POSIX, MPI, and RTOS’s, but conclude that the SystemC language best 

captures the temporal and spatial concepts required of a standard FPGA distribution 

format. 

In Chapter 3, we introduce SystemC-on-a-Chip, a framework that allows a 

designer to capture applications in SystemC and have them immediately run on any 

platform that supports the SystemC emulation engine. We introduce the newly developed 

SystemC bytecode (analogous to Java bytecode), a lean intermediate representation of the 

SystemC application that preserves both the temporal and spatial features of the 

application. The SystemC bytecode facilitates a portable representation of the SystemC 

application that can run any platform assuming SystemC bytecode support. The SystemC 

bytecode is supported by the SystemC Emulation Engine. The SystemC emulation engine 

can run on any development platform that supports a basic interface of a number of 

different peripherals, memories, and internal components. The SystemC emulation 

engine’s core is a SystemC emulation kernel. The SystemC emulation kernel consists of a 

lean event-driven kernel, a virtual machine to execute the SystemC bytecode instructions, 

and hooks and access to the development platform’s peripheral set.  We demonstrate the 

usefulness of the SystemC-on-a-Chip framework by developing several complete 

SystemC-on-a-Chip platforms, highlighting that writing SystemC applications follows 

the same “Write once, run anywhere” programming paradigm made popular by 

interpreted languages like Java and C#. 
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In Chapter 4, we show that for the common case where the SystemC-on-a-Chip is 

running on an FPGA, we can achieve substantial speedup over a baseline emulation 

engine by intelligently taking advantage of available FPGA resources.  We introduce 

SystemC bytecode accelerators, special coprocessors that can execute the SystemC 

bytecode natively. SystemC bytecode accelerators are implemented using available 

FPGA resources, and can be numerous, allowing a SystemC application to effectively to 

run in parallel (compared to being a parallel simulation). The SystemC bytecode 

accelerators can improve SystemC emulation execution by approximately 2X. We further 

demonstrate that the SystemC emulation engine can make intelligent choices about how 

best to effectively utilize the SystemC bytecode accelerators. We define the Online 

Emulation Acceleration problem and demonstrate that we can achieve 20x improvement 

over the baseline SystemC emulation engine. With extra available FPGA resources, we 

also show that we can create custom interconnects among the SystemC bytecode 

accelerators. Such custom interconnects can effectively bypass the SystemC emulation 

kernel, and result in additional performance improvement.  

Unfortunately not all platforms benefit from the resources required to instantiate 

multiple SystemC bytecode accelerators. In Chapter 5, we address this issue a software-

based improvements that just-in-time compile the SystemC bytecode to the native 

processor upon which the SystemC emulation engine is running. Using minimal 

resources, we modify the SystemC-on-a-Chip framework to be JIT Aware, allowing the 

just-in-time compiled code to execute from resident small, fast memories.  Our JIT 

Aware framework includes a JIT Aware Memory, and custom logic for maintaining 
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emulation signal and event queues. Such modifications result in speedups of 

approximately 10X compared to a baseline emulation engine, and at near comparable 

speeds to the same application developed for the native platform. 

In Chapter 6, we demonstrate just-in-time synthesis of SystemC applications 

running on the SystemC-on-a-Chip framework. Just-in-time synthesis is a transparent 

process(to the SystemC application designer and to the SystemC emulation engine) that 

synthesizes, place and routes, and maps the original SystemC application to a native 

implementation that fully takes advantage of the platform’s available resources.  Just-in-

time synthesis of SystemC application results in orders of magnitude speedup of SystemC 

applications compared to executing natively on the SystemC emulation engine, and 

several times faster than simulating the SystemC application on a desktop PC. 

In Chapter 7, we describe the utility of using the SystemC-on-a-Chip framework 

for digital physiological model development. We demonstrate time-controllable debug 

features, allowing a physiological model designer to debug using the concept of time. 

This is contrast to traditional debug approaches that require debugging at the instruction 

level.  While instruction level debugging makes sense for traditional sequential programs, 

time-level debugging provides powerful mechanisms to the digital physiological model 

designer not possible with more traditional approaches. 

In Chapter 8, we demonstrate tools and materials useful for teaching a course on 

spatial programming with SystemC.  We develop a freely available Windows-based 

framework to compile, connect, and download SystemC descriptions to popular teaching 
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development platforms. We also present possible course materials, including web 

materials, and course lessons.     

We demonstrate the feasibility of using SystemC as a portable distribution 

language for FPGA applications. We demonstrate the portability of such a portable 

distribution by developing a fast SystemC emulation framework that transparently 

optimizes the SystemC application, allowing SystemC applications to immediately run 

without costly and hard-to-use synthesis/mapping tool flows. 
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Chapter 2   

Spatial Algorithms 

2.1 Overview 

As FPGAs become more common in mainstream general-purpose computing platforms, 

distributing high-performance implementations of applications on FPGAs will become 

increasingly important. We present a study entitled C is for Circuits that shows that while 

many manually created circuits can be captured in a sequential language like C for 

portability purposes, often those implementations would still benefit from explicit 

parallel concepts. We then investigate the requirements for a language for spatial capture 

of FPGA applications, and conclude that SystemC satisfies such requirements. 

 

2.2 C is for Circuits 

2.2.1 Overview 

It is now well-established that many sequential algorithms captured in a language like C 

can be synthesized to exceptionally fast circuits on field-programmable gates arrays. 

Numerous FPGA synthesis tools exist [39][49][57][104], with commercial offerings 
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beginning to appear [24][25][76], and commercial computing platforms increasingly 

supporting FPGAs [77][119]. Capturing algorithms in C code (or a similar sequential 

language, which for simplicity we’ll refer to as C code henceforth) provides tremendous 

portability advantages, as code can be compiled to a microprocessor, or synthesized 

entirely or partially to FPGAs available on a computing platform. Yet, designers still 

often conceptualize and capture applications as circuit designs, rather than as C code. 

While this situation is partly explained by the relatively nascent state of FPGA 

compilation tools, a significant contributor is also the radically different computation 

model provided by C than by circuits. The sequential instruction model of C is oriented to 

time-ordered execution of instructions, while circuits are oriented to spatial connectivity 

of concurrently-executing components.  

In contrast to the advent of compilers causing assembly coding to be almost 

entirely replaced by C coding, where both coding styles were temporally oriented, the 

Figure 2:  Although temporally-oriented algorithms in C can be synthesized to a variety of circuits trading off size and 
performance, many clever circuits representing spatially-oriented algorithms are not reasonably derivable from 

temporally-oriented algorithms. 
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sharp distinction between temporal and spatial models likely means that spatial models 

will persist in some form despite continued maturation of C-based FPGA synthesis. 

Spatial models, such as circuits, possess tremendous degrees of design freedom. Much 

human ingenuity often underlies the design of both custom circuits and what are known 

as “hardware algorithms,” which often look radically different from sequential code 

algorithms designed to solve the same problem. (Because “hardware algorithms” is a 

misnomer in the era of FPGAs, which implement circuits as software, we use the term 

“circuit-based algorithms”). Figure 2 shows that while a standard synthesis tool might be 

able to generate a number of different circuits based on the temporally-oriented Quicksort 

algorithm, no amount of transformations would be likely to discover a systolic array 

circuit implementation for fast sorting. 

Although circuits represent an important application capture method, capturing 

applications as circuits suffers from limited portability. A circuit, captured at the netlist 

level or even at the register-transfer level, cannot readily be adapted to FPGAs differing 

in their capacities or hard core resources, nor be compiled to execute on a 

microprocessor. Improved portability could increase the present usefulness of an 

application across platforms, while also increasing its longevity. In contrast to a circuit, 

an algorithm captured in C code has much portability. C code can be synthesized to 

FPGAs of differing capacities and hard core resources, through transformations like loop 

unrolling and through scheduling, allocation, binding, and technology mapping. C code 

can even be partitioned among a microprocessor and FPGA, or run on a microprocessor 

(or several microprocessors) without any FPGAs at all.  
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We therefore asked the following question: 

To what extent can human-designed circuit implementations of an application 

be captured in a form of C code that can be expected to be synthesized back to 

the same human-designed circuit?  

Note that this question has a subtle but critical difference from most past research that 

instead seeks to convert an existing sequential algorithm to a circuit 

[39][43][49][64][104][126][129] – research that clearly has much utility. To the best of 

our knowledge, the above question has not been directly addressed by the codesign or 

synthesis communities.  

Several previous works are related to the question. Stitt [130] provides guidelines 

for C coders to yield improved circuits. Haubelt [63] formally analyzes a high-level 

description’s flexibility, meaning the extent to which the description can be synthesized 

to a wide variety of circuits.  

Other works are also related. Work on reverse engineering of circuits [40][59] has 

focused on obtaining low-level behavioral models, like Boolean equations or finite-state 

machines, for retargeting to different silicon technologies. Those works are not intended 

for targeting microprocessors. Early hardware/software partitioning work moved non-

critical circuit functionality from circuits to microprocessor code [58]. SystemC [46], 

involving libraries and macros added to C++, allows for temporal and spatial concepts to 

be captured in a single C++ description.  

Of course, circuit designers who use synthesis tools regularly use knowledge of 

synthesis techniques when writing behavioral (e.g., register-transfer-level) descriptions, 
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such as writing a for loop that can easily be unrolled. Likewise, parallel architecture 

programmers write simpler code (e.g., loops) they know compilers will transform to 

parallel code. The question we seek to answer takes circuit techniques to a higher level, 

and differs from parallel programming techniques in the finer granularity of parallelism 

offered by FPGAs compared to more standard parallel architectures.  

None of the above works explicitly addresses whether existing circuits can be 

captured in a temporal language. Answering this question is relevant to the FPGA and 

codesign communities, to determine the extent to which C code can be used to distribute 

circuit-based algorithms to different compute platforms – algorithms that today are 

commonly captured and distributed as circuit or register-transfer-level designs. 

 

2.2.2 A Motivating Example – Sorting 

There are numerous factors a designer must consider when implementing a sorting 

algorithm, including data set size, data ordering, and now more recently, the platform on 

which the algorithm will run.  

A software designer targeting a microprocessor platform might use a classic 

temporal sorting algorithm, such as Quicksort[69], which recursively divides the data into 

sets greater than and less than a selected pivot. In contrast, a designer targeting an FPGA 

might approach the problem differently, instead relying on spatial constructs to capture 

the notion of sorting.  The designer might use a systolic Mergesort [154] or Bitonic sort 

[17], representing highly-parallel, pipelined sorting methods, which cannot reasonably be 

expected to be derived from a Quicksort algorithm by any FPGA compiler (Figure 2). 
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Those methods are radically different than the temporal Quicksort algorithm, even though 

they accomplish the same task.  

Unfortunately, a systolic Mergesort circuit representation is typically not portable, 

often distributed as a bitstream or at best, some form of netlist. The lack of portability 

forces distributors to design not only different circuits for different data set sizes, but also 

for different FPGA sizes and families, which could easily number in the hundreds. Figure 

3 illustrates the portability benefits of capturing circuits as C code, showing that if we can 

capture the systolic Mergesort circuit in some form of C code that could be synthesized to 

the original circuit, we would have a more robust distribution format, capable of being 

run on a wide range of platforms. 

2.2.3 Study Methodology 

Figure 3: C is for circuits:  Some circuits might still be captured in a form of C code that is synthesizable back to the 
original circuit; such C code would provide tremendous portability advantages over other circuit representations 
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To investigate whether circuits designed for FPGAs might be captured and 

synthesized from C code, we examined all papers from six years of the IEEE Symposium 

on Field-Programmable Custom Computing Machines (FCCM 2001-2006), a forum for 

presentation of clever human-designed circuits for FPGAs (among other topics). We 

found 70 papers that focused on description of new circuit-based algorithms or clever 

circuit implementations of standard algorithms for some application. After estimating that 

each example would require 2-3 days of investigation, we decided to investigate in-depth 

half of those circuits. We pseudo-randomly chose the subset of 35 circuits to investigate 

by sorting the 70 circuit papers according to their appearance in the proceedings, starting 

from oldest to newest. We chose every other paper for investigation – we explain this to 

make clear that the circuits were not handpicked based on their suitability for C code 

representation.  

We then strove to find C code descriptions for the circuits that would compile 

back to the same circuit. The goal of the study was to find any C description that would 

compile to the human-designed circuit. Specifically, the claim is not that all functionally 

equivalent C algorithms would compile to that circuit. Only one is needed, and that one 

would be used to distribute the circuit-based algorithm. Furthermore, the goal is not to 

automate the derivation of the C code from the circuit, but merely to determine if a 

competent designer could capture his/her circuit in C code if necessary.  

If we were able to capture the circuit in C code that would synthesize back to the 

same circuit, we classified the circuit as “re-derivable from C”.  
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Note that if we failed to classify the circuit as re-derivable from C, another C 

algorithm for the application likely exists that would synthesize to some other circuit with 

the same functionality, just not the same circuit as the human-designed one. That other 

circuit would likely have slower performance. 

We further sub-categorized the circuits that we found to be re-derivable from C as 

either synthesizable from “temporally-oriented C” or “spatially-oriented C”. We define 

“ temporally-oriented C” as the obvious algorithm that most simply captured the desired 

behavior of the application (e.g., what we feel is the most “natural” algorithm).  If we 

failed to find such a C algorithm, we next tried to capture the circuit’s unique spatial 

features, through careful use of subroutines and loops, such that a reasonable FPGA 

synthesis tool should yield the original circuit again. While noting whether circuits were 

captured in temporally-oriented and spatially-oriented C was not the main point of the 

study, the distinction does provide some notion of the effort required by designers to 

capture their circuit in C code, with spatially-oriented C being harder to write. 

Furthermore, the distinction also shows the extent of the cleverness of the human-

designed circuit, with those derivable from the spatially-oriented C rather than 

temporally-oriented C likely exhibiting more complex or novel circuit design features. 
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Because FPGA synthesis tools are still maturing and presently differ widely, we did not 

simply run the C algorithm through one particular tool. Instead, we defined the 

transformations and optimizations that could be expected in a mature “standard” 

synthesis tool. The reader may thus determine for him/herself whether the 

transformations are “standard” enough to be applied by synthesis tools. To perform 

synthesis, we followed the methodology shown in Figure 4. If we were able to capture 

the circuit in C, we converted that C code into a control/data flow graph. We optimized 

the graph by performing the following optimizations in the order shown: function 

inlining, loop unrolling, predication, constant propagation, dead code elimination, and 

Figure 4: Study methodology. We modeled each circuit in C (when possible). We then performed the following 
transformations and optimizations in the order shown, representing a “standard” synthesis tool, and observed whether the 

original circuit was recovered.  
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code hoisting – straightforward optimizations that could be reasonably implemented in 

any compilation tool. We performed definition-use analysis to verify that regions of a 

circuit could be pipelined straightforwardly. We performed resource allocation by 

allocating a resource for every operation in the dataflow graph. We could have used a 

more conservative resource allocation, but most of the circuits we investigated were 

pipelined, and therefore would not allow sharing of resources. We scheduled the graph 

using resource-constrained list scheduling, inserting registers between each stage of the 

dataflow graph. Again, we could have used a more conservative pipelining approach to 

save area, but we were interested in maximizing clock frequency. Next, we converted the 

scheduled graph into a structural VHDL representation that we then synthesized using 

Xilinx ISE.  

Designers typically define a custom memory interface to best serve the custom 

circuit, yet our defined standard synthesis tool does not involve synthesis of custom 

memory interfaces.  Since this work concentrates on capturing the compute aspect of 

custom circuits in C, and not the memory interface, we assume that the synthesis tool is 

provided with information for each circuit from which the tool can synthesize a custom 

interface similar to that in the custom circuit. Future work will involve developing 

mechanisms for providing custom interface information as well as synthesis 

transformations to generate custom interfaces.  

Most of the custom circuits used a standard memory interface consisting of one 

dual-ported memory, which allows one port for reading and one for writing. This kind of 

memory interface allows for block transfers and single transfers, similar to many DMAs. 
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Some circuits implemented streaming data from off-chip memories, while others did not 

use external memory. 

For each example, we targeted the specific FPGA used for each of the custom 

circuits in their original papers. Although we could have compared both the original 

circuit and synthesized circuit on newer FPGA fabrics, we felt such comparison might be 

unfair if the custom circuits were designed based on the characteristics of the original 

FPGA fabric. 

 

2.2.4 Example – Gaussian Noise Generator 

Figure 5 shows the custom circuit in [88] for a Gaussian noise generator. The circuit 

consists of four pipeline stages. The first stage utilizes linear feedback shift registers 

(LFSRs) to generate a 32-bit and 18-bit random number, corresponding to u1 and u2. 

Stage 2 uses the random numbers from the previous step as input to the illustrated 

functions, which consist of square root, sine, cosine, and log functions. Stage 3 adds 

every two consecutive results from stage 2. The circuit implements this functionality by 

delaying one input for a cycle using a register and then adding the output of the register 

with the output from the previous stage. This buffering results in a delay to the pipeline, 

potentially causing an output to be generated every 2 cycles. Stage 4 multiplexes the 

results from stage 3 to the output of the noise generator. By adding a register to the right 

input of the multiplexor, the circuit generates an output every cycle, instead of two 

outputs every two cycles. 
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We first tried to determine if the circuit was re-derivable from temporally-

oriented C. The natural temporal C uses a loop that executes the behavior of stages 1 and 

2 twice to generate two samples for the accumulate step in stage 3. FPGA synthesis tools 

would replicate the circuit used in each iteration of the loop, increasing the area of the 

circuit without improving performance. We next tried to determine if the circuit was re-

derivable from spatially-oriented C. Figure 6 shows a portion of the C code to model the 

Gaussian noise generator circuit in Figure 5. The C code utilizes a single function to 

describe each pipeline stage of the custom circuit. The output is stored into the array 

noise[]. To handle outputting to an array, we modified the code for stage 4 to store the 

two noise samples to two memory locations, as opposed to multiplexing the output to a 

single location. As we will show, this code is synthesized to the same stage 4 circuit 

shown in Figure 5. For simplicity, the C code uses floating point arithmetic as opposed to 

the fixed-point arithmetic in the custom circuit. The fixed-point code is similar, with the 

main difference being that the code uses logical and operations to remove unused bits of 

Figure 5: Circuit for a Gaussian noise generator. 
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the random numbers, essentially specifying the width of each number to be 32 bits for u1 

and 18 bits for u2. 

The control and data flow graphs generated during synthesis for each function of 

the C code are shown in Figure 7. Figure 7(a) shows the control flow graph for main(), 

Figure 6: Spatial C code for Gaussian noise generator. 

inline float rand0_1() {  
  return rand()/((float) RAND_MAX+1); 
} 
 
inline Stage1 doStage1() { 
  Stage1 result; 
  result.u1 = rand0_1(); 
  result.u2 = rand0_1(); 
  return result; 
} 
 
inline Stage2 doStage2( float u1, float u2 ) { 
 
  Stage2 result; 
  float f_u1, g1_u2, g2_u2; 
 
  f_u1  = sqrt( -log( u1 ) ); 
  g1_u2 = sin( 2*M_PI*u2 ); 
  g2_u2 = cos( 2*M_PI*u2 ); 
  result.x1 = f_u1*g1_u2; 
  result.x2 = f_u1*g2_u2; 
  return result; 
} 
 
inline Stage3 doStage3( float x1, float x2 ) { 
 
  static float acc1=0.0, acc2=0.0; 
  Stage3 result; 
 
  result.x1 = acc1 + x1; 
  result.x2 = acc2 + x2; 
  acc1 = x1; 
  acc2 = x2; 
  return result; 
} 
 
inline void doStage4( int i, int j, 
                float x1, float x2 ) { 
 

 noise[i] = stage3.x1; 
 noise[j] = stage3.x2; 

}  
 
int main() { 
 
  Stage1 stage1; Stage2 stage2; Stage3 stage3; 
  unsigned int i=0; 
 
  while (1) { 
      stage1 = doStage1(); 
      stage2 = doStage2( stage1.u1, stage1.u2 );  
      stage3 = doStage3( stage2.x1, stage2.x2 );  
      doStage4( i, i+1%NUM_SAMPLES,  

 stage3.x1, stage3.x2 );  
      i = (i+2)%NUM_SAMPLES; 
    } 
 
  return 0; 
} 
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where each function call has a corresponding node in the graph. For simplicity, we have 

omitted the control flow node for the code used to update the variable i. Figure 7(b) 

shows the data flow graph for function doStage1(). We omit the control flow graph for 

this function, and all other functions, because the corresponding graphs consist of only a 

single node. The data flow graph for stage 1 assigns random numbers to the two outputs 

of the function.  Although not shown, the data flow graph also contains operations to 

constrain the random numbers to values between 0 and 1. Figure 7(c) and Figure 7(d) 

show the data flow graphs for the doStage2() and doStage3() functions. The data flow 

graph for doStage4(), shown in Figure 7(e), produces two outputs instead of the single 

output from Figure 5. 

Figure 8 shows the circuits for each data flow graph for each C function after 

synthesis performs scheduling, resource allocation, and binding. For stage 1, shown in 

Figure 8(a), synthesis maps the random number generators to LFSRs. Figure 8(b) shows 

the circuit for stage 2, for which synthesis utilizes approximation techniques to map the 

Figure 7: Control/data flow graph for C-level Gaussian noise generator functions (a) main, (b) doStage1, (c) doStage2, 
(d) doStage3, and (e) doStage4. 
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functions in stage 2 onto the same resources used to approximate these functions in the 

custom design. Unlike in the custom circuit, scheduling during synthesis is likely to insert 

registers between the approximation circuits and the multipliers in order to reduce the 

critical path length. For stage 3, shown in Figure 8(c), synthesis maps acc1 and acc2 onto 

registers because the outputs from this stage are used again as inputs. Stage 4, shown in 

Figure 8(d), multiplexes the two outputs from the data flow graph for this stage. 

Synthesis adds the multiplexor because the outputs from the data flow graph are written 

to memory, which in this case is a shared resource with only a single port. To allow both 

inputs to be written to memory, synthesis delays input x2 one cycle using a register while 

the circuit stores x1.  

Figure 8: Datapaths after scheduling, resource allocation, and binding for (a) doStage1, (b) doStage2, (c) doStage3, (d) 
doStage3, (e) main before pipelining, and (f) main after pipelining. Note the similarity with Figure 5. 
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To optimize the circuit, synthesis can inline all of the functions for each stage into 

the main function and then perform code hoisting to move the code for each stage into a 

single control flow node, which is possible since there exists no control in each function. 

The resulting data flow graph for this single control node is shown in Figure 8(e). During 

scheduling, synthesis will insert a register at each level of the data flow graph, as shown 

in Figure 8(f). Note the similarity of the circuit in Figure 8(f) with the custom circuit 

shown in Figure 5. The only difference in the synthesized circuit is the addition of 

registers before the multipliers – an addition that may actually improve performance 

compared to the custom circuit. 

The throughput of the synthesized circuit is identical to the custom circuit, with 

each circuit producing a noise sample each cycle. The latency of each pipeline is 

different, but this latency only determines when the initial output from the circuit is valid. 

We point out that under certain situations, the two circuits are likely to differ in other 

ways. For example, if the target architecture utilizes a dual-ported memory or a memory 

with sufficient bandwidth to simultaneously store two results, then stage 4 of the 

synthesized circuit will not contain the multiplexor or buffer register. This architectural 

difference does not affect throughput, but does affect timing, resulting in two noise 

samples every two cycles. To our knowledge, synthesis cannot guarantee the same timing 

as the custom circuit due to the lack of timing information in the C code. However, the 

timing difference after synthesis does not appear to be critical. 

Thus, we classify this circuit as re-derivable from (spatially-oriented) C. 
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2.2.5 Example – Molecular Dynamics Simulator 

Scrofano [118] creates a custom FPGA accelerator for molecular dynamics simulations. 

The authors identify the nonbonded-forces calculations as the most time consuming 

region of the simulation and provide a custom circuit for those calculations. 

Figure 9(a) shows the pseudocode implemented by the custom circuit. For each 

atom, the inner loop calculates the forces from each neighbor of the atom. The code 

stores the forces in the array forceRAM, which the following loop stores into the 

forceOBM array.  

Figure 9(b) shows a high-level view of the custom circuit for the inner loop. 

Scrofano utilizes two separate on-board memories (OBM) to store the positionOBM array 

and the forceOBM array. Utilizing two memories allows the circuit to simultaneously 

stream position and force data without stalling, therefore achieving a maximum 

throughput of one force calculation per cycle. Scrofano implements the forceRAM array 

in on-chip memory to minimize the amount of read/write mode switches that would be 

Figure 9: Molecular dynamics accelerator. (a) Code for calculating nonbonded forces. (b) Custom circuit utilizing a divided 
pipeline to reduce latency penalty. (c) The synthesized pipeline differs from the custom circuit by utilizing a single pipeline. The 

synthesized circuit must stall due to a single memory, reducing throughput. 
foreach atom i do 
  ri = positionOBM[i] 
  fi = forceOBM[i] 
  n = 0 
  foreach neighbor j of i do 
      if |ri – rj| < rc then 
         rj = positionOBM[j] 
         fij = calcNBF( ri, rj ) 
         fi = fi + fij 
         fj = forceOBM[j] 
         forceRAM[n] = fj – fij 
         n = n+1 
      end 
   end 
   forceOBM[I] = fi 

   foreach fj in forceRAM do 
      forceOBM[j] = fj 
   end 
end 

Pipeline1 

Pipeline2 
 

positionOBM[] forceOBM[] 

forceRA
M 

Pipeline1 

positionOBM[], forceOBM[] 

forceRA
M 

(a) (b) (c) 
Max throughput: 
1 output per cycle 

Max throughput:  
1 output every 2 cycles 

p1 

p2 

Latency 

p1+p
2 

Latency penalty: p2  

Latency penalty: p1+p2  



28 

required if the forces were stored back immediately to the forceOBM array. To optimize 

the datapath, the authors divided the pipeline into two pipelines separated by a FIFO. 

Dividing the pipeline reduced the latency penalty that was incurred every time the inner 

loop executed. The first pipeline generates output faster than the second pipeline and 

therefore only the latency of the second pipeline has a significant effect on performance. 

If we used C code based on the pseudocode in Figure 9(a) to try and model the 

custom circuit, the inner loop becomes a fully pipelined circuit that streams in the force 

and position data. Synthesis maps the forceRAM array onto block RAMs, which is 

possible due to the small size of the array, resulting in a single pipeline that performs the 

same operations as the two pipelines in the custom circuit. To our knowledge, there is 

presently no common synthesis technique that automatically divides a pipeline as is done 

in the custom circuit. Such a technique may be possible, requiring analysis to best 

determine the placement and size of the buffer. By using a single pipeline, the 

synthesized circuit incurs a larger latency penalty each time the inner loop executes, as 

shown in Figure 9(c).  The designer might instead direct the FPGA synthesis tool by 

altering the C code in Figure 9(a) to model the buffer that separates the two pipelines. 

This might be accomplished by inserting a function call to enqueue the intermediate 

result of the first pipeline and dequeuing a result to the input of the second pipeline. Of 

course, this relies on a model of a buffer the FPGA compiler can recognize. By modeling 

the spatial constructs of the circuit, an FPGA tool would be able to effectively recover the 

original circuit. 
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Another important difference when using the temporally-oriented code in Figure 

9(a) is that the synthesized circuit uses a single memory for input. When synthesizing 

code to a specific architecture, the synthesis tool must use the appropriate memory 

architecture, which we assume to be a single off-chip memory. Therefore, the synthesized 

circuit must read the position and force arrays from a single memory, which does not 

provide sufficient bandwidth to execute the pipeline without stalls. Therefore, the 

synthesized circuit has a lower throughput, outputting a force calculation every two 

cycles. If enough on-chip RAM existed to store both arrays, or the synthesis tool could 

stream data into two on-chip memories fast enough, then the synthesized circuit could 

perform similarly to the designer-specified circuit. 

Thus, we classify the molecular dynamics circuit as re-derivable from (spatially-

oriented) C. 

 

2.2.6 Example - Cellular Learning Automata-Based Evolutionary 

Computing 

In [62], Hariri et al. proposed a custom architecture for cellular learning automata 

based evolutionary computing (CLA-EC). This architecture consists of a ring of cells, 

each of which stores a genome. The architecture for each cell is shown in  

Figure 10(a). Each cell consists of multiple learning automata (LA) that determine 

a new genome. The update circuit replaces the existing genome with the new genome if 

the fitness value of the new genome is better. The majority function uses the genome of 
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the left and right neighbor cells to generate reinforcement signals that guide the learning 

automata. 

An abbreviated version of the C code we used to model the CLA-EC is shown in  

Figure 10(b). This code iterates over some maximum possible number of cells, 

which is based on the input size. For each cell, generateNewGenome() implements the 

behavior of the majority function, learning automata, and the update function. The 

generateNewGenome() function updates the new genome if the new genome is better, 

otherwise the function sets new genome equal to the old genome. Because 

generateNewGenome() only modifies a single cell, the loop containing the 

generateNewGenome() function has no loop-carried dependencies, allowing synthesis to 

parallelize the function calls by performing function inlining, loop unrolling, predication, 

and code hoisting. 

After the generateNewGenome() loop completes, updateGenomes() updates the 

genome for each cell with the new genome determined by the generateNewGenome() 

function calls. By modifying the genome of each cell, the updateGenomes() function 

 

Figure 10: The proposed custom CLA-EC circuit consisting of a ring of (a) custom CLA-EC cells and (b) C pseudocode that 
synthesizes to an almost identical parallel circuit (code for cell internals is omitted). 
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Cell cells[MAX_CELLS]; 
int main() { 
  for (i=0; i < MAX_CELLS; i++) 
     generateNewGenome(i); 
  updateGenomes();  
  return 0; 
} 
void updateGenomes(){ 
  for(i=0; i<MAX_CELLS; i++) 

   cells[i].genome = cells[i].newGenome; 
} 

Cell 

(a) 
(b) 
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creates a dependency with the generateNewGenome() function, which uses the genome as 

input. To handle this dependency, synthesis stores the genome in a register. The resulting 

circuit is almost identical to the custom circuit. The only difference is the addition of a 

multiplexor before the new genome register that either selects the output of the learning 

automata or the output of the genome register. 

The simplicity of the C code in Figure 10(b) suggests that this implementation 

may also be the most natural way of writing the application in C. We classify the cellular 

automata circuit as readily re-derivable from (temporally-oriented) C.  

 

2.2.7 More Experiments 

We described several examples from the FCCM literature and our attempts to capture 

those designs in some form of standard C code. We now briefly highlight several other 

randomly selected examples before summarizing results for the entire examined set. 

Tripp [138] designed a circuit to implement a large metropolitan traffic simulation 

(Road Traffic). Each cell computed car velocities and positions based on a specific rule 

set imposed by the designers which reflected real world traffic conditions. When we 

focused on the computational aspect of each cell in the network, we found the traffic 

design to be readily derivable from (temporally-oriented) C.  

Bogdonav [19] designed a systolic array structure to solve matrix calculations 

using Gaussian elimination (Elimination). The authors in fact modified a temporally-

oriented algorithm to achieve their circuit design.  We also found the circuit to be re-

derivable from C code. We decided to model the Gaussian elimination calculation with 
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spatially-oriented C code to ensure synthesis transformations would recover the original 

systolic array structure.  

Krueger [86] designed a floating point unit to add two streaming numbers. The 

design incorporated variable delays, which we were not able to capture in either temporal 

or spatial C. We classified their design as not re-derivable from C. We again point out 

that there do exist C algorithms for this application that would synthesize to some circuit 

– just not to the particular published circuit.  

Figure 11:  82% of the studied circuits published in FCCM were re-derivable from C, meaning they could be captured in 
some form of C such that a synthesis tool could be expected to synthesize the same or similar custom design.  

 Year of Publication  Design            Re-derivable from C? Method/Reason 
    2001  3D Vec. Normalization Yes  Spatial, if online algorithms can be specified  

 2001  Efficient CAM   No  Uses dynamic FPGA routing 
 2001  Automated Sensor  Yes  Temporal, floating point -> fixed point 
 2001  Regular Expression  Yes  Spatial, creative connections of one-bit flip flops 
 2002  Hyperspectral Image  Yes  Spatial, data reordering 
 2002  Machine Vision  Yes  Spatial, custom pipelining 
 2002  RC4   Yes  Temporal, straightforward implementation 
 2002  Set Covering  Yes  Spatial, data structures for easy hw implementation 
 2002  Template Matching  Yes  Spatial, heavy modifications to original algorithm 
 2002  Triangle Mesh  Yes  Spatial, custom encoding scheme 
 2003  Congruential Sieves  Yes  Temporal, straightforward translation 
 2003  Content Scanning  Yes  Temporal  
 2003  F.P and Square  Yes  Spatial 
 2003  Gaussian Noise  Yes  Spatial, requires the use of spatial C constructs 
 2003  TRNG   No  Requires sampling a high frequency clock for noise 
 2004  3D FDTD Method  Yes  Spatial 
 2004  Deep Packet Filter  No  Requires knowledge of underlying FPGA  
 2004  Online Floating Point  No  Online algorithm, variable length buffers 
 2004  Molecular Dynamics  Yes  Spatial 
 2004  Pattern Matching  Yes  Spatial 
 2004  Seismic Migration  Yes  Spatial 
 2004  Software Deceleration  No  Use a uP for its cache 
 2004   V.M Window  No  Specific timing schemes implemented 
 2005  Data Mining  Yes  Spatial 
 2005  Cell Automata  Yes  Temporal 
 2005  Particle Graphics  Yes  Spatial 
 2005  Radiosity   Yes  Temporal 
 2005  Transient Waves  Yes  Spatial 
 2005  Road Traffic  Yes  Temporal 
 2006  All Pairs Shortest Path Yes  Spatial 
 2006  Apriori Data Mining  Yes  Spatial 
 2006  Molecular Dynamics  Yes  Spatial, define separate memories, custom pipeline 
 2006  Gaussian Elimination  Yes  Spatial 
 2006  Radiation Dose  Yes  Temporal 
 2006  Random Variates  Yes  Spatial 
----------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Totals:     82% of the circuits were re-derivable from C 
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Figure 11 summarizes all the designs studied. As described earlier, we identified 

70 custom circuit designs published in the last six years of the IEEE Symposium on 

Field-Programmable Custom Computing Machines, of which we chose every other 

circuit to study in depth, totaling 35 custom circuit designs. Of the 35 designs, 29 of the 

designs, or 82%, were found to be re-derivable from C. Of the 29 circuits re-derivable 

from C, 9 of those, or 25% of all 35 circuits, were captured in temporally-oriented C. 

Again, this means these designs could have been written in natural high level code, and 

we could have reasonably expected a synthesis tool to recover the circuit, without much 

human effort at the circuit level. We note that a benefit of being able to capture the circuit 

as temporally-oriented C is that if the platform on which the circuit runs happens to be a 

microprocessor, the code may be able to run at or near its best performance, because the 

algorithm may be the same algorithm one would have written if initially targeting a 

microprocessor. 

20 of the circuits, or 57%, were re-derivable from C were captured in spatially-

oriented C code. There were several common reasons why a design had to be described 

in spatially-oriented C as opposed to the more natural temporally-oriented algorithm. 

Custom circuit designs often employed a combination of spatial techniques, including 

intricate pipelining, custom buffering, advanced memory hierarchies, and systolic array 

connectivity, none of which could reasonably be re-derived from the standard synthesis 

techniques.  

For 17% of the circuits, we were unable to capture the circuit in any form of C 

code that would be synthesized back to that circuit.  James-Roxby et. al [80] proposed 
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logic-centric systems in which they added microprocessors to the design to make 

effective use of the cache hierarchy, a technique not reasonably describable using 

standard C constructs. Several circuits [86][150] utilized low level cores that made re-

deriving from C difficult. Others [145] implemented circuits that relied on precise timing, 

which is also difficult to capture in C. One circuit [81] took advantage of the dynamic 

reconfigurability of the FPGA to implement dynamic routing, a technique clearly not 

supported by standard C constructs.   

In summary, 82% of the circuit designs published in a forum for circuit-based 

algorithms could be captured in some form of standard C such that a synthesis tool 

supporting a basic set of transformations could recover the circuit from that C code.   

Figure 12(a) compares the performance of the custom-designed circuits and the 

circuits synthesized from the C code for several of the examined circuits. All 

performances are normalized to the performance of the custom-designed circuits. For 

each example shown, the performance of the synthesized circuit was either identical to 

the custom circuit or slightly slower than the custom circuit. Had we modeled the 

molecular dynamics circuit with the original temporal pseudocode shown in Figure 9(a), 

the synthesized circuit would have been 2.3x slower. This performance decrease would 

have been caused by the inability of synthesis to split a pipeline into smaller pipelines 

that communicate using FIFOs. By modeling the molecular dynamics circuit with custom 

spatially-oriented C code, synthesis is able to generate a nearly identical circuit. 

Figure 12(b) compares the area, in slices, of the synthesized circuits and the 

custom circuits. On average, the synthesized circuits required only 6% more slices. This 
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extra area was used by multiplexors and other glue logic that synthesis was unable to 

remove, and by additional pipeline registers. 

advantage of describing a circuit in C is that the C can be distributed to different 

platforms having different amounts of FPGAs, and an FPGA synthesis tool could thus 

allocate more or less resources for the application without requiring a designer to 

distribute a new circuit. In this section, we estimate the changes in performance for each 

application when being implemented on both a smaller and larger FPGA than the ones 

used in the previous section. 

A larger FPGA for the Gaussian noise generator would not improve the 

performance of calculating a single noise sample, but would allow for more samples to be 

generated per cycle by replicating the circuit several times. While the ability to replicate a 

circuit is not unique to writing the circuit in C, it certainly makes the task easier. 

Alternatively, a larger FPGA could be used to improve the accuracy of the approximation 

circuits. 

For the molecular dynamics simulator, a larger FPGA could potentially eliminate 

the memory bottlenecks of the synthesized design. If a large portion of the input could be 

Figure 12: Comparison of original custom circuits versus circuits synthesized from derived sequential code 
representations:  (a) Normalized xecution time and (b) Normalized area (slices) Both metrics are normalized to values for 

the original custom circuit. 
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stored in on-chip memory, then synthesis could create the same, or even an improved 

memory architecture compared to the custom circuit. Increased on-chip memory could 

provide sufficient bandwidth to read multiple positions and forces, improving the 

throughput of the pipeline to several force calculations per cycle.   

For a larger FPGA, CLA-EC potentially would achieve significant performance 

improvements compared to software, due to the ability to implement more cells on the 

same device. In [86], the authors show an approximately linear speedup compared to 

software when increasing the number of cells. Based on their results, an FPGA with twice 

the capacity would result in an approximate 2x speedup. Alternatively, a larger FPGA for 

CLA-EC would allow the circuit to determine an improved result for a given run time.  

For the Gaussian Elimination circuit, a larger FPGA would not improve the 

performance of the custom circuit for existing matrix sizes. However, a larger FPGA 

would enable circuits for larger matrices, improving performance by at least 2x for a 

matrix that would not fit in a smaller FPGA. 

Similarly, a larger FPGA size for the metropolitan traffic simulation would enable 

simulations of larger road networks. 

For the online floating point unit, additional resources would not improve 

performance because the parallelism of the hardware is limited by non-constant bounded 

loops that cannot be unrolled. 

For smaller FPGAs, the C code for each application could be synthesized by the 

FPGA to use fewer resources. In fact, every example except the Gaussian noise generator 

could be implemented with a datapath consisting of only a multiplier, an adder, a register 
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file, and a corresponding amount of steering logic. The performance of these smaller 

circuits would be slower than the pipelined implementations of the original circuits, but 

the C representation would still provide a correct implementation. For the Gaussian noise 

generator, the C representation would synthesize to a circuit as long as the FPGA had 

enough resources to implement the sine, cosine, square root, and log functions. 

Furthermore, every example could be implemented entirely on a microprocessor, 

at the obvious cost of slowdown. We leave examining the extent of that slowdown, and 

partitioning among microprocessor and FPGA, for future work. However, because 25% 

of the examined circuits could be captured in temporally-oriented C code, the 

microprocessor performance of these captured circuits is likely comparable to 

corresponding software-oriented implementations, since these implementations are likely 

to be similar.   

 

2.3 Other Related Work 

2.3.1 C-based Synthesis Tools 

There is a growing community that seeks to convert existing sequential algorithms into 

structures suitable for FPGA implementation. Numerous FPGA synthesis tools exist, with 

several commercial offerings beginning to appear.  Most offerings extend the C language 

with parallel constructs or compiler-specific pragmas that aid in exposing parallelism and 

pipelining opportunities. Other efforts [106][143] automatically attempt to extract as 

much parallelism and pipelining opportunities, while still allowing the original C code to 

compile for a traditional CPU. 
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2.3.2 Parallel Languages 

There are a number of models of computation and circuit capture methods. Brown [21] 

shows that a parallel model of computation requires machine primitive units, control 

constructs, communication mechanisms, and synchronization mechanisms.  Circuits are 

usually captured in a hardware description language (HDL) like Verilog [141], or VHDL 

[142], although circuits can also be captured using schematics. 

 

2.3.3 Portability 

There has been previous work in capturing applications and circuits to increase 

portability. Andrews and Anderson [3][4] focus on creating operating system and 

middleware abstractions that extend across the hardware/software boundary, enabling a 

designer to create applications for hybrid platforms with one executable. Levine [91] 

describes hybrid architectures with a single, transformable executable. They argue that an 

executable described for a queue machine (converse of a stack machine) makes runtime 

optimizations to a specialized FPGA fabric feasible. Moore [100] describes writing 

applications that dynamically bind at runtime to reconfigurable hardware for the purposes 

of portability. Similar to Andrews and Andersons, the authors develop hardware/software 

abstractions by writing middleware layers that allow application software to utilize 

reconfigurable DSP cores.  Vuletic [146] proposes a system-level virtualization layer and 

a hardware-agnostic programming paradigm to hide platform details from the application 
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designer and lead to more portable circuit applications.  Lysecky and Stitt [93][131] 

showed that a temporally-based binary could potentially be used as part of a standard 

FPGA binary approach. They introduce Warp Processors. Warp processors can 

dynamically profile, extract, and synthesize computationally expensive temporal kernels 

into fast FPGA circuits.  Their approach makes FPGA tool flows completely transparent, 

and result in application speedups up to 10X, and energy savings of up 80%. 

 

2.4 Requirements of a Language for Spatial Capture 

C is for Circuits demonstrated that sequential languages possess many constructs that 

would form part of a viable distribution format for FPGA applications. In some cases, the 

sequential programming constructs (sequential instructions, function calls, etc) were 

sufficient to capture an FPGA application. In many other cases, the sequential 

programming model was limited, forcing awkward implementations, or at worst not 

being able to capture the same behavior. For the FPGA applications that were difficult or 

impossible to capture using only a sequential programming model, we identified several 

programming constructs that would have made such implementations feasible, or simpler 

to capture. One requirement is the ability to spatially connect two components together 

through the use of a specified interface. Another requirement is the ability to control 

precise timing synchronization between spatially connected components. The third 

requirement is that the language should be able to be executed on both a microprocessor 

and an FPGA. Such a language requirement will include sequential constructs found in a 
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language like C, with the addition of spatial and timing constructs found in explicitly 

parallel languages like VHDL and Verilog. 

For illustrative purposes, we use the pipelined binary tree, developed by Lysecky 

[94] to guide decisions on which parallel programming model best suits the constructs 

required for such a portable distribution format. Figure 13 shows an n-level pipelined 

binary tree, a high throughput circuit for the pattern counting problem. Target patterns are 

stored in the tree in breadth-first order. The first level (root) contains only one pattern, the 

second level contains two patterns, the third four patterns, the fourth eight patterns, and 

so on. Each level consists of control logic and a memory to store the patterns, and another 

memory of the same size (not shown in the figure) to maintain pattern counts. Each level 

operates concurrently, taking information from the previous level, and sending 

information to the next level.  

Figure 13: Pipelined Binary Tree [94]. Each level operates concurrently, taking the pattern and address information from 
the previous level, and passing information to the next level.  Such a design cannot readily be captured in a sequential 

language, and requires explicit parallel constructs to capture for portable distribution 
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Level 1 receives the current pattern and compares with the target pattern. If equal, 

level 1’s logic increments the count associated with that target pattern. If less, the logic 

passes the pattern to level 2, informing level 2 to look in its left node (because in a binary 

tree, if the pattern is less than the root, then search proceeds down the left sub-tree) – in 

particular, by telling level 2 to look at address 0. If greater, level 1 tells level 2 to look in 

address 1. Level 2 then compares the pattern with the target pattern located in the address 

it received from level 1 (while level 1 meanwhile processes the next incoming pattern). If 

equal, level 2’s logic increments the count associated with that target pattern. If less, level 

2 appends a 0 to the address, so if the address was 0, the new address is 00; if it was 1, 

the new address is 10. If greater, level 2 appends a 1 to the address, yielding either 01 or 

11. Subsequent levels operate similarly, either incrementing their count, or appending 0 

or 1 to the address as they pass the address to the next level. The pipelined binary tree is 

unique in the sense that it’s an explicitly parallel algorithm which dedicated 

interconnections, precise timing, and that which cannot readily be captured in a 

sequential language like C for distribution purposes. 

 

2.4.1 POSIX 

One popular method for implementing parallel based applications is to use the POSIX-

based approach. POSIX is a thread-based library targeting C-based languages that allows 

a designer to capture parallel programs with a predefined set of library function calls to 

create, spawn, and join parallel computations (processes) together.  POSIX-based 

programming represents a possible method for capturing FPGA-based applications 
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because the combination of parallel constructs (from POSIX) and the sequential 

constructs (from the C-based language) seem to match the requirements needed of many 

FPGA based applications. 

Figure 14 shows the earlier described pipelined binary tree implemented using a 

POSIX-based approach. The implementation works, but suffers from several 

disadvantages. Because the pipelined binary tree benefits from precisely timed 

communication in which every level is speaking with the next level every cycle, 

Figure 14: Snippet of POSIX-based implementation of one level of the pipelined binary tree and how levels are connected 
and how they communicate. 

unsigned char level1_pattern; 
unsigned char level1_address; 
unsigned char level1_enable; 
 
unsigned char level2_pattern; 
unsigned char level2_address; 
unsigned char level2_enable; 
 
sem_t  timestep_done,computeLevel1Done;  
sem_t level1_pattern, level1_address, level1_enable; 
sem_t level2_pattern, level2_address, level2_enable; 
 
 
void * ClockTick( void * arg ) { 
   while(1){ 
      sem_wait(&computeLevel0Done); 
      sem_wait(&computeLevel1Done); 
      sem_wait(&computeLevel2Done); 
      sem_post(&timestep_done); 
   } 
} 
 
int main(){ 
   pthread_t timeStepFunction; 
   pthread_t computelevel0; 
   pthread_t computelevel1; 
   pthread_t computelevel2; 
   … 
   pthread_create(&computelevel0); 
   pthread_create(&computelevel1); 
   pthread_create(&computelevel2);  
   pthread_create(&timeStepFunction); 
  
   pthread_join(computelevel0, NULL); 
   pthread_join(computelevel1, NULL); 
   pthread_join(computelevel2, NULL); 
   pthread_join(timeStepFunction, NULL); 
 
   return 0; 
} 

void * computeLevel1( void * arg ) { 
   static TPM[2]; 
   TPM[0] = 10; 
   TPM[1] = 20; 
 
   while (1) { 
      sem_wait(&timestep_done); 
      sem_wait(&level1_pattern); 
      sem_wait(&level1_address); 
      sem_wait(&level1_enable); 
       
      //actual behavior of level1 
      level2_pattern = level1_pattern; 
      if(level1_pattern == TPM[level1_address]){ 
         level2_address = (level1_address << 1) | 1; 
      } 
      else{ 
         level2_address = (level1_address << 1) | 0; 
      } 
 
      if(level1_pattern == TPM[level1_address]){ 
         level2_enable = 0; 
      } 
      else{ 
         level2_enable = 1; 
      } 
 
      sem_post(&level2_pattern); 
      sem_post(&level2_address); 
      sem_post(&level2_enable); 
      sem_post(&computeLevel1Done); 
   } 
} 
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modeling such behavior using a thread-based approach is difficult, hard to read, and 

difficult to extend. As shown in the figure, the designer must explicitly create a new 

thread that manages global time. Also, the POSIX design relies on using a complicated 

set of locks and semaphores to guard the global memory space from being incorrectly 

written to and/or read from. Whereas one hallmark trait of FPGA-based circuits is the 

precisely-timed communication between concurrently executing components, POSIX-

based approaches typically benefit most coarse communication mechanisms, and begin to 

suffer both in performance and robustness as the implementation tries to capture finer 

grained communication granularity. 

 

2.4.2 Other Thread-Based Approaches 

There are other thread-based approaches we considered as a possible portable distribution 

format for FPGA-based applications. The Message Passing Interface (MPI) [97] 

represents one such approach.  In contrast to a POSIX-based approach which uses shared 

memory to communicate among concurrently executing components, concurrently 

executing in MPI-based applications pass explicit messages to each other, both 

synchronously and asynchronously. MPI-based approaches work well for large 

distributed systems, but still don’t match the precisely timed communication model often 

seen of FPGA applications. 

Real-time operating system (RTOS’s) represent a finer grained approach, 

allowing the user to time at some granularity the period at which parallel processes 

should execute, but still fall shy of the precisely-timed communication required of many 
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FPGA applications. For instance, while an RTOS might allow the designer to specify that 

a set of processes execute every millisecond, such granularity is often insufficient, and 

there is usually no guarantee as to the ordering of the execution of the processes, which 

could lead to incorrect behavior.  

 

2.4.3 SystemC 

Another method for capturing FPGA applications is to use SystemC. SystemC is a set of 

libraries that seeks to bridge the gap between HDLs and the standard programming 

language C++, by achieving HDL functionality using C++ objects, thus enabling a 

designer to describe a complete system, including both sequential program behavior and 

circuit behavior, in a single language environment. Figure 15 shows the same pipelined 

binary tree captured using SystemC. The SystemC method is attractive, allowing a 

designer to capture concurrently executing components using well known C++ practices 

(class creation, templates, etc) while still allowing for precisely timed communication 

because each component be “clocked” by a global clock that manages simulated time, 

and need not be explicitly introduced into the design. 
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We have chosen to use SystemC as distribution format for several reasons. 

SystemC allows for the spatial connection of concurrently executing components, the 

ability to precisely time the communication between multiple components, and the ability 

Figure 15: Snippet of SystemC implementation of a level of the pipelined binary tree and how multiple levels are 
connected. 

class LEVEL1: public sc_module { 
 public: 
  sc_in<sc_uint<8> > p_i;   //pattern 
  sc_in<sc_uint<1> > A_i;   //address 
  sc_in<bool> cen_i;        //chip enable 
  sc_in_clk   clock;        //input clock 
 
  sc_out<sc_uint<8> > p_o;   //pattern 
  sc_out<sc_uint<2> > A_o;   //address 
  sc_out<bool> cen_o;        //chip enable 
 
  // Tell SystemC this is a SystemC module 
  SC_HAS_PROCESS(LEVEL1); 
 
  int TPM[2]; 
  int CM[2]; 
 
  int address; 
 
  // Constructor, declare concurrent processes here 
  LEVEL1(sc_module_name n ) : sc_module(n) { 
    SC_METHOD (computeLevel1); 
    sensitive << clock.pos(); 
    CM[0] = 0; CM[1] = 0; 
    TPM[0] = 8; TPM[1] = 24; 
  } 
 
void computeLevel1() { 
    p_o.write(p_i.read());    //pattern is pass thru 
 
    address = A_i.read().to_int(); 
 
    if(p_i.read().to_int() > TPM[address]){              
A_o.write(sc_uint<2>((A_i.read(), true))); 
    } 
    else{ 
      A_o.write(concat(A_i.read(), false)); 
    } 
 
    if(p_i.read().to_int() == TPM[address  
      cen_o.write(false); 
    } 
    else{ 
      if(cen_i.read() == true){ 
         cen_o.write(true); 
      } 
      else{ 
         cen_o.write(false); 
      } 
    } 
 
   } 

class BIN_TREE: public sc_module { 
 public: 
  sc_in<sc_uint<8> > p_i;   //pattern 
  sc_in<bool> A_i;   //address 
  sc_in<bool> cen_i;        //chip enable 
  sc_in_clk    clock;       //input clock 
 
  sc_out<sc_uint<8> > p_o;   //pattern 
  sc_out<sc_uint<5> > A_o;   //address 
  sc_out<bool> cen_o;        //chip enable 
 
  // Tell SystemC this is a SystemC module 
  SC_HAS_PROCESS(BIN_TREE); 
 
  // Constructor, declare concurrent processes here 
  BIN_TREE(sc_module_name n ) : 
    sc_module(n), bintree0("level0"), 
bintree1("level1"), 
    bintree2("level2"), bintree3("level3"), 
bintree4("level4") { 
 
//0th LEVEL 
      bintree0.p_i(p_i); 
      bintree0.A_i(A_i); 
      bintree0.cen_i(cen_i); 
      bintree0.clock(clock); 
 
      bintree0.p_o(pattern_s01); 
      bintree0.A_o(address_small); 
      bintree0.cen_o(chipEnable_s01); 
 
//FIRST LEVEL 
      bintree1.p_i(pattern_s01); 
      bintree1.A_i(address_small); 
      bintree1.cen_i(chipEnable_s01); 
      bintree1.clock(clock); 
 
      bintree1.p_o(pattern_s12); 
      bintree1.A_o(address_medium); 
      bintree1.cen_o(chipEnable_s12); 
 

Use temporally-oriented 
code to implement 
internal behavior 

Explicit  ports for 
connecting 
concurrently 
executing 
components 

Interconnections 
are simple and 
natural 
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describe the behavior of components using temporally-oriented constructs.  Additionally, 

the SystemC libraries are freely available and becoming more widely adopted. 
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Chapter 3  

SystemC-on-a-Chip Framework 

3.1 Overview 

SystemC [133] represents a digital system description approach based on C++. SystemC 

uses object-oriented features of C++ to enable descriptions that include features common 

in previous hardware description languages (HDLs), such as creation of components, 

instantiation and connection of components to form a circuit, and precisely-timed 

communication and execution among concurrently-executing components, all using 

existing C++ syntax. Regular C++ code can be included in descriptions, and SystemC 

also provides a thread library, thus supporting description of both the “software” 

(sequential instructions coupled with parallel threads) and “hardware” (circuit) parts of an 

entire system in a single description language.  

While a SystemC description can be executed on a PC for simulation purposes 

before eventually synthesizing the description to an ASIC, FPGA, or board-level 

customized implementation, in-system SystemC emulation, wherein the executing 

description would interact with physical inputs and outputs (I/O), would also be useful.  
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In-system emulation is common for embedded processors. Though slower than a 

custom implementation, emulation enables early prototyping, and benefits from real I/O 

rather than fabricated I/O in simulation, whose creation can be difficult and time-

consuming while still not matching the complexity and nuances of real I/O. Emulation 

can be especially useful for SystemC, as illustrated in Figure 16, due to the fact that 

synthesis tools can be expensive (compared to compilers), may only run on limited PC 

platforms and be challenging to install (especially on lower-end PCs), may be 

unpredictable with respect to circuit size/speed or tool runtime, often require long 

runtimes (such as hours or days), may not support particular target devices or platforms, 

and can only synthesize the parts of the code written for synthesis. The main tradeoff is 

Figure 16: SystemC-on-a-Chip allows a designer to emulate SystemC descriptions on various supported development 
platforms. Emulation enables early prototyping and interaction with real peripherals and I/O, while reducing the need for 

advanced compilation and synthesis.  
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that emulation is typically much slower than native platform execution. Another tradeoff 

is that the emulation engine must be present on a target platform, but this is a one-time 

task, which may be done by the platform’s developers or by platform users (such as 

teaching assistants in an educational setting).    

For education, where system execution speed may not be a top priority, emulation 

may be entirely sufficient, such as when describing a microprocessor system as is 

commonly done in computer architecture courses, where such descriptions may never be 

intended for synthesis, but execution on a physical platform is desired. In fact, for some 

systems (in education settings or otherwise), emulation may be fast enough to serve as a 

final implementation, obviating the need for synthesis, akin to virtual machines 

sometimes being sufficient for executing processor bytecode such as Java bytecode. For 

example, a “human reaction timer” system may involve several interacting components 

interfacing with buttons, LEDs, and LCDs, with emulation speed being fast enough to 

interact with all these items. In such cases, SystemC ultimately represents a parallel 

programming approach such as an approach using POSIX threads, with the added benefit 

of supporting circuit-style spatial connectivity, but the drawback of not (presently) 

supporting real-time scheduling as in a real-time operating system approach.  

We introduce an approach to SystemC emulation, involving several parts. We 

created a compiler to convert SystemC to a new bytecode format that we developed, 

which possesses MIPS-like instructions supplemented with new SystemC-specific 

instructions that convey spatial and timing information. We developed an emulation 

engine that can run on a microprocessor on a development platform and that executes the 
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SystemC bytecode while interacting with I/O and (optional) peripherals (frame buffers, 

UART, etc.). Because portability is important in the approach, we introduce a USB flash-

drive method for programming, wherein the compiler-generated textual bytecode file is 

copied to a USB flash-drive, which is then read by the development platform and just-in-

time translated to the machine-level bytecode used by the emulation engine. For the 

common situation where the emulation engine is implemented on (or with access to) an 

FPGA, we developed FPGA-based custom emulation accelerators that substantially 

increase the emulation speed, enabling SystemC execution speeds comparable to middle-

to-high-end PCs.   

 

3.2 Related Work 

There has been research in the field of hardware emulation for verification and 

testing, including the BEE reconfigurable platform [27], and network-on-chip emulation 

platforms [52]. Nakamura [105] describes a hardware/software verification platform that 

uses shared register communication between a processor simulator and FPGA emulator. 

Benini [15] describes virtual in-circuit emulation of SystemC circuits for co-verification 

and timing accurate prototyping.  Rissa [116] evaluates the emulation speeds of several 

SystemC models compared to standard HDL models. 

Much research has involved virtualization [92][124], with several commercial 

products developed in response to the need for portable virtual machines. VMware [147] 

and the open source product Xen [153] concentrate on developing virtual machines that 

allow the end-user to run multiple operating systems concurrently. The Java Virtual 
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Machine [127] allows the programmer to write operating system independent code, and 

tools like DOS Box and console emulators allow the user to run legacy applications in 

modern operating systems.  Fornaciari [47] extends virtualization to FPGA platforms, 

giving the application designer a virtual view of an FPGA that is then physically mapped 

via operating system functionality.  Virtualization has also been used to abstract complex 

microcontroller details from the beginning embedded systems student [123].  

 

3.3 SystemC-on-a-Chip Components 

The SystemC-on-a-Chip platform consists of four main parts, including a SystemC 

bytecode compiler, a new intermediate SystemC bytecode format, a portable USB flash 

drive download interface, and an emulation engine. 

 

3.3.1 SystemC Bytecode Compiler 

We considered several options to achieve in-system emulation of SystemC descriptions. 

One approach was to port the publicly available SystemC libraries to each development 

platform, and add support for I/O and peripheral interaction. Such an approach would 

allow the same SystemC binary to run on any supported development platform, including 

standard PCs. Also, the SystemC circuit would run natively on the development 

platform’s microprocessor. However, the SystemC libraries are large and require OS 

support, thus limiting the number of platforms that could support the SystemC-on-a-Chip 

framework.  Furthermore, the SystemC libraries build a simulation kernel into the circuit 
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executable, increasing the size of the executable and making testing multiple SystemC 

descriptions quickly more difficult.  

Another option was to decompile the SystemC executable, extract the circuit, and 

retarget that circuit for a custom emulation framework.  The decompilation approach 

separates the circuit from the simulation kernel, allows testing multiple circuits quickly, 

and potentially a smaller circuit executable.  A custom emulation framework also allows 

smaller development platforms to take advantage of in-system SystemC emulation. 

However, decompilation is difficult, and solutions that operate at the source SystemC 

level seemed more feasible.  

The option that we chose was to directly operate from SystemC source code to 

produce bytecode, as shown in Figure 17. Our SystemC compiler builds upon the 

PINAPA tool [102]. Originally intended as a front-end for circuit verification tools, 

Figure 17: SystemC bytecode compiler:  (a) The SystemC bytecode compiler builds on PINAPA, a SystemC front-end 
tool, and uses a custom SystemC bytecode backend; (b) Sample code generation during the first phase of the SystemC 

bytecode back end. 
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PINAPA provides a gcc compiler front-end to SystemC circuits that extracts a circuit’s 

spatial and architectural features from the SystemC description.  

The PINAPA front-end performs two operations on the SystemC program. 

PINAPA uses a modified version of the gcc compiler to extract behavioral information 

about each process and component in the circuit to generate the corresponding abstract 

syntax trees (AST), and uses a modified SystemC kernel to extract the circuit’s 

architectural features, like ports, signals, and spatial connectivity. Finally, PINAPA links 

the architectural description (ELAB) to each component’s AST to form the intermediate 

output.  

We created a custom two-pass back-end to the PINAPA compiler that accepts 

PINAPA’s AST+ELAB output and generates SystemC bytecode. The first pass traverses 

each ELAB component’s AST. The first pass inlines auxiliary functions, flattens 

hierarchical descriptions, and generates initial SystemC bytecode assuming an infinite 

amount of available registers, shown in Figure 17(b). The second pass performs a linear 

scan register allocation [114] on the first pass output to constrain the intermediate code to 

a fixed number of registers. The output of the register allocation pass is a readable text 

file of the SystemC description in SystemC bytecode. 

 

3.3.2 SystemC Bytecode Format 

The SystemC-on-a-Chip platform accepts a bytecode version of the SystemC description, 

and not a traditional SystemC binary, nor the SystemC source code. A traditional 

SystemC binary includes much more information than is actually required to emulate the 
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application, including constructs to support object-oriented C++ programming, and the 

simulation kernel. SystemC source code separates the circuit from the simulation kernel, 

but requires compiler support on each development platform. Similar to Java bytecode 

and a Java Virtual Machine, an intermediate SystemC bytecode format separates the 

SystemC description behavior from the simulation kernel, doesn’t require a platform 

compiler, and can run on any development platform that supports the SystemC bytecode 

format.  

The format of the SystemC bytecode is shown in Figure 18. The SystemC 

bytecode is a flattened version of the original SystemC description. The SystemC 

bytecode compiler flattens the SystemC description to more efficiently emulate the 

SystemC bytecode. A SystemC circuit is composed of a list of signals and a list of 

processes. A signal is a wire or set of wires that connects independently running 

processes, and is defined by a signal name and bit width. A process is a behavioral 

description of a circuit entity. A process is defined by a sensitivity list, a list of signals the 

process is sensitive to, and a list of sequential instructions which define the process’s 

behavior.   
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A process is captured as a sequence of sequential instructions. The SystemC 

bytecode instructions are a derivative subset of the MIPS RISC register machine 

instruction set [67], shown in the bottom half of Figure 18. We also considered targeting 

virtual stack or queue machines. The Java Virtual Machine [127] executes bytecode 

instructions intended for a stack machine, and [91] executes bytecode instructions for a 

queue machine. Proponents of stack and queue based bytecode formats argue that the 

stack/queue bytecode can more efficiently run on a virtual machine because the operands 

are implied. Other studies [37] have shown that the advantages of stack machines aren’t 

Figure 18: SystemC bytecode format.  Each process is described by a number of MIPS-like instructions, with additional 
instructions added for SystemC specifics, like reading signals, extracting bit ranges, etc.  
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as clear.  The authors show the bytecode targeted towards a register machine can be 

competitive with stack machine code, and usually results in more compact code. An 

additional advantage is that register bytecode is more readable, potentially allowing a 

student to write bytecode in the absence of a SystemC bytecode compiler.  

SystemC bytecode format supports three different types of instructions: 

computation/memory instructions, control instructions, and SystemC-specific 

instructions. The computation and control instructions are derived from the MIPS 

instruction set [67]. We chose the RISC MIPS instruction set because the SystemC 

bytecode is easy to generate, because a RISC-based emulator can be efficient [37], and 

because the code is understandable to the beginning student. We also chose a 

representative subset of the MIPS instructions that would allow specifying all circuits 

described in the synthesizable subset of SystemC[134].  

Figure 19: USB interface. The user copies SystemC bytecode to a USB flash drive, plugs the drive into a platform 
and pushes a button—the platform then begins emulating the SystemC description. 
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We added a number of SystemC-specific instructions to the base MIPS instruction 

set, including the BIT, RANGE, READ, WRITE, and WAIT instructions. The BIT and 

RANGE instructions extract either one bit or a range of bits from a given register. The 

READ and WRITE instructions allow a process to read and write signals, much as the 

process can load or store values to memory. We added the SystemC-specific instructions 

to more efficiently execute frequently occurring SystemC primitives and function calls. 

Most of the SystemC-specific instructions could have been implemented as a sequence of 

the basic computation instructions except for the WAIT instruction. The WAIT instruction 

allows a SystemC description to wait a fixed number of simulated time steps. The WAIT 

statement is the only supported feature that does not follow the synthesizable SystemC 

guidelines, but allows designers to test their SystemC applications with custom bytecode 

test benches. The END instruction instructs the emulation engine that a process is done 

executing.    

 

3.3.3 USB Download Interface 

Our SystemC-on-a-Chip platform supports USB programming via a USB flash drive, 

rather than a traditional hardware programmer or USB cable. A traditional hardware 

programmer requires non-volatile memory and a removable chip, greatly limiting the 

number of supportable development platforms. An alternative programming approach is 

to program a device in-system using a USB cable.  While eliminating the need for a 

programming device, such an approach still requires a PC every time a designer wishes to 

load a new SystemC description. 
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Instead, we chose a USB flash drive programming approach, illustrated in Figure 

19. A user (such as a student) copies the desired SystemC description (in bytecode 

format) onto a USB drive as a file, plugs the drive into the SystemC-on-a-Chip platform, 

and presses a button on the platform that downloads the program from the flash drive to 

the internal emulation engine. The approach eliminates the need for non-volatile memory 

in the development platform. The approach enables loading and changing circuits by 

inserting and swapping flash drives, enabling more mobility and portability. The 

approach also matches current usage schemes for popular electronic devices, allowing a 

beginning student to start programming with minimal effort, and using a familiar 

paradigm. The cost is that the SystemC-on-a-Chip platform must contain an internal USB 

flash drive reader.    

 

3.3.4 SystemC Emulation Engine 

The basic emulation engine supports SystemC bytecode written or generated for the 

synthesizable subset of SystemC.  We currently do not support higher level features of 

SystemC like transaction level and system level modeling because we are presently 

targeting SystemC descriptions that could eventually run natively on an FPGA. Figure 

20(a) shows the architecture of the basic emulation engine.  

The basic emulation is driven by a processing core that runs a lean, event-driven 

simulation kernel [48]. Figure 20(b) shows the pseudocode for the event-driven kernel. 

For each time step, the event-driven kernel processes a queue of ready-to-run events. An 

event is placed on the queue when a signal value is updated and that signal is on the 
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sensitivity list of a process. Each time step might consist of multiple delta time steps, in 

which a process may execute multiple times during a time step. After each delta step, the 

event kernel updates the signal values, and places any new sensitive processes onto the 

event queue.  

The signal’s values are located on the system bus in Signal Memory 1 and Signal 

Memory 2. Processes and peripherals write to Signal Memory 1, and read from Signal 

Memory 2. After each delta step, the event kernel copies the contents of Signal Memory 1 

to Signal Memory 2. The advantage of putting the signal memories on the bus is that 

peripherals have easy access to the signal values, and gives access to emulation 

accelerators. The disadvantage is that multiple peripherals might try to access the signal 

memories at the same time as the event kernel, blocking the bus, and degrading emulation 

efficiency.  

Figure 20: Basic emulation engine. The emulation engine consists of a hybrid event-driven kernel to allow a variety of 
different circuit implementations. Circuits can also take advantage of a range of standard peripherals, including lights, 

buttons, a UART, and input and output memories.  
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The event-driven kernel calls a bytecode virtual machine to execute each event in 

the event queue. The bytecode virtual machine supports the SystemC bytecode 

instruction set described in the previous sections. Each process is allocated an instruction 

memory, register file, and local data memory. The virtual machine also contains proper 

hooks to communicate with the standard peripheral and I/O set. We designed the 

bytecode virtual machine using standard techniques from [124] to increase the efficiency 

of execution.  

The emulation engine supports platform I/O and peripheral access. The set of 

peripherals includes buttons, LEDs, UART, and input and output memories. We chose 

the peripherals to be a representative subset of peripherals that most development 

platforms could support. For development platforms with a larger set of peripherals, 

emulation designers could easily add extra support. The basic emulation engine supports 

SystemC descriptions that implement the interface shown in Figure 21. The description 

writer does not have to follow the standard interface, but the standard interface provides a 

convenient mapping between description’s signals and the available peripherals. 

 

Figure 21: SystemC-on-a-Chip circuit interface. The emulation engine supports access to multiple peripherals, including 
buttons, LEDs, and memory. 

 
 SystemC 

Circuit  
Cloc
Rese
Butto
uart 

Input 
Memo
ry 

LED
uart 

Input Mem 

Output Mem 

Output Mem 

Input Mem 



61 

3.4 Experiments 

We built two complete SystemC-on-a-Chip platforms, and implemented dozens of 

SystemC descriptions to demonstrate the applicability of in-system SystemC emulation. 

The systems we built are summarized in Figure 22. One platform used the Virtex4 Ml403 

FPGA development board, and the other used a Spartan 3E FPGA development board. 

On the Virtex4 ML403 FPGA, we built the emulation engine on a PowerPC processor 

and used the PLB bus framework to access I/O and peripherals. On the Spartan 3E 

FPGA, we built the emulation engine on a Microblaze soft-core processor, using the OPB 

bus framework to access peripherals and I/O. The instruction memory, stack, and heap 

for the PowerPC based basic emulation engine were all stored in SRAM. In contrast, the 

instruction memory, stack, and heap for the Microblaze-based system were all located in 

on-chip BRAM. Due to limited BRAM resources, some SystemC descriptions would not 

run on the Microblaze-based platform. No SRAM existed on the Spartan 3E platform.  

Figure 22: SystemC-on-a-Chip prototypes. Each system differed in size, processor, memory, and number of emulation 
accelerators, but each could run the same SystemC bytecode for a given SystemC description. 
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We implemented a number of different circuits in SystemC, including an edge 

detector, encryption/decryption applications, various state machines, and several smaller 

combinational logic components to exercise the entire SystemC bytecode set. We 

implemented the edge detector with two communicating processes in about 200 lines of 

SystemC. The encryption/decryption units required about 300 lines of SystemC, and 

consisted of five processes. One of the combinational components, a structural 

implementation of a 32-bit adder, required 500 lines of SystemC and consisted of 66 

processes. The SystemC bytecode compiler compiled each example in seconds, and 

generated between 50-2000 bytecode instructions. Figure 23(a) shows a snippet of the 

SystemC source code for the edge detection circuit. The edge detection circuit was 

written with two processes, one process to gather pixel data from the input memory, and 

one process to perform the edge detection and output to the output memory. We 

configured each platform to use the output memory as a frame buffer, allowing visual 

Figure 23: SystemC experiments. (a) SystemC code for Image Edge Detection. The code took only minutes to create and 
compile before being put on a Virtex4. (b) Edge Detection running on a Virtex4.  We connected the memory output to a 

frame buffer to see the results on a VGA screen. 
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inspection of the output on a VGA screen (Figure 23(b)). The edge detection circuit could 

process a 128x128 image in approximately 30 seconds on the base emulation engine. 

While slow, in an early prototyping scenario, or in a classroom setting, such times might 

be acceptable. We also compared the edge detection circuit running on the SystemC-on-

a-Chip platforms to the same SystemC circuit description running on an Intel-based PC 

running at 2 GHz. The SystemC edge detection circuit took 0.5 seconds to complete the 

same 128x128 image.  

We compared a variety of SystemC descriptions on a base SystemC-on-a-Chip 

platform on both the Virtex4 Ml403 platform and on the Spartan 3E platform to running a 

native application on the underlying platform and to PC simulation. On the Spartan 3E 

development platform, the Microblaze system clock was half the speed of the PowerPC 

on the Virtex4, but fetched memory more efficiently since the Microblaze had a 

dedicated bus to the BRAM instruction memory. In all cases, the basic emulation engine 

executed the SystemC descriptions ~100X slower than the executing an implementation 

of the application on the native platform and up to 1000X slower than PC simulation. If 

we normalize for clock speed since the PC is running several orders of magnitude faster 

than the Xilinx platforms, the performance is comparable. In all cases, the SystemC 

bytecode was portable, allowing us to write the SystemC application once, and run on 

any of the supported platforms. The basic emulation engine has the advantage that many 

smaller development platforms could still support its software (like the Spartan 3E 

implementation), enabling in-system SystemC emulation for less capable systems, or for 
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systems without FPGA resources. In future chapters, we seek techniques and 

architectural enhancements to improve the performance of base SystemC emulation. 
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Chapter 4  

SystemC Bytecode Accelerators 

4.1 Overview 

For the common situation where the SystemC-on-a-Chip platform is implemented on an 

FPGA, we’ve developed emulation accelerators that substantially increase the SystemC 

emulation speed. Figure 24(a) shows multiple emulation accelerators connected to the 

basic emulation engine. Each emulation accelerator runs in parallel to the other emulation 

accelerators and the main emulation processor. Figure 24(b) shows the internals of one of 

the emulation accelerators. The emulation accelerator consists of a small SystemC 

bytecode processor and bus steering logic. The bytecode processor is a modified multi-

cycle MIPS datapath, with connections to a register file and local data memory. The 

emulation accelerator can complete most instructions in 3-4 cycles, with the exception of 

the READ instruction, which has a nondeterministic execution time since the accelerator 

must read data from the system bus. The emulation accelerator is configured as a master 

on the system bus to allow the accelerator to read and write the emulation engine’s signal 

memories independent from the emulation processor, and as a slave to allow the 

emulation processor to command the start of its execution.  
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     The number of emulation accelerators can substantially increase the 

performance of the SystemC emulation since each emulation accelerator runs in parallel. 

The emulation accelerators do contend for the signal memories, but typical SystemC 

behavioral descriptions only read/write signals at the start and end of their descriptions. 

The advantages of emulation accelerators increase as the size of the SystemC processes 

increase since the emulation accelerator can execute bytecode instructions orders of 

magnitude faster than the basic emulation engine can. There are tradeoffs though. 

Assuming circuit emulation doesn’t require fast execution, the FPGA area required to 

implement emulation accelerators could be allocated for other circuitry, including more 

advanced peripherals or I/O. Also, smaller process descriptions may not benefit much 

from emulation acceleration, or other SystemC execution times might be perfectly 

acceptable in without acceleration. 

Figure 24: Emulation accelerators.  The emulation accelerator consists of a multicycle MIPs-like datapath than can execute 
one instruction in about 3-4 cycles, almost 100X faster than executing the same instructions in the base emulator. 
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Because the SystemC emulation engine benefits from connecting to real I/O 

compared to modeled I/O, shown in Figure 25(a and b), another potential drawback of 

SystemC in-system emulation is that the ordering of events on the event queue is not 

known before runtime, making some existing static acceleration techniques like queue 

reordering [82] and process splitting [103] less effective. Figure 25(c and d) shows how 

two different input sequences into a SystemC emulation image processing system can 

generate two different output sequences, of which only an adaptive mapping of processes 

to acceleration engines can guarantee higher emulation performance. The SystemC 

Figure 25:  SystemC in-system emulation: (a) In-system emulation of a description allows testing with real I/O, thus 
creating dynamic test bench input vectors that cannot be analyzed statically. (b) Sample image processing system that 
invokes several different filters depending on the input. (c) Statically mapping each process to either software or an 
acceleration engine results in widely varied runtimes for different input sequences. (d) Dynamically mapping SystemC 
processes in response to the input sequence results in higher performance emulation for all input sequences.   
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emulation framework allows for dynamic decisions of whether to execute a process’ 

bytecode on the microprocessor SystemC kernel, or to load and execute that bytecode on 

an acceleration engine. However, acceleration engines are limited, and loading 

acceleration engines involves time overhead, so load decisions should be made so as to 

minimize total execution time.  

Thus, a problem exists as to how to efficiently utilize the finite number of 

SystemC acceleration engines to execute a dynamically changing event-driven SystemC 

emulation event queue such that the total emulation time is minimized. We define the 

online SystemC emulation acceleration problem, and apply online heuristics to 

dynamically improve the performance of SystemC emulation. 

 

4.2 Related Work 

Improving the performance of event-driven simulations has been extensively researched. 

Much research has concentrated on developing parallel frameworks for general event-

driven simulation. Fujimoto [51] presents a comprehensive survey of several parallel 

simulation techniques.  Jefferson [82] analyzes the critical paths of event-driven 

simulations, and discusses techniques to achieve supercritical speedups in simulation. 

Das [36] discusses adaptive protocols for parallel simulations.  

Other work has focused on specifically improving SystemC simulations. Naguib 

[103] automatically splits SystemC processes to prevent unnecessary wake up calls to the 

SystemC event kernel. Perez [111] creates an optimized implementation of the SystemC 

kernel that utilizes acyclic scheduling. Wang [149] uses compiled simulation to eliminate 
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unnecessary evaluations, and to improve simulation time. Our work focuses on dynamic 

SystemC emulation (rather than static SystemC simulation) whose behavior requires 

dynamic scheduling techniques to improve performance.  

Another area of research combines both of the above approaches to parallelize the 

SystemC simulation kernel. Chopard [30] and Combes [32] show how relaxing a number 

of constraints on the event queue makes feasible a parallel SystemC event-driven kernel.  

Chandran [26] identifies methods to execute the SystemC kernel on simultaneous 

multiprocessor machines for faster performance. Our work utilizes FPGA resources to 

accelerate the execution of SystemC processes for higher performance emulation. 

Dynamic load balancing has been studied extensively in previous works 

[61][78][98]. The idea of dynamic load balancing is that migrating processes across a 

network from high load hosts to lower load hosts can minimize application execution 

time despite overhead in migrating processes between processors. Our online SystemC 

emulation acceleration problem can be considered a special case of dynamic load 

balancing with heterogeneous processing units and high migration overheads. 

Dynamic system optimizations have also been the focus of much research. Balarin 

[6] presents a survey of real-time embedded system scheduling, which classifies the 

problem into static scheduling and dynamic scheduling. Danne [35] introduced real-time 

scheduling algorithms for periodic applications in an FPGA. Ghiasi [53] uses the task 

graph model to reorder task execution offline to minimize reconfiguration overhead. 

Huang and Vahid [72][73] develop new online heuristics for managing FPGA 

coprocessors in a dynamic environment. Noguera [108] proposed dynamic run-time 
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hardware/software scheduling techniques for FPGAs emphasizing dynamic concurrent 

task scheduling. Steiger [128] proposed the use of a reconfigurable operating system to 

manage dynamically incoming tasks and online scheduling problem. Our work applies 

these dynamic techniques to improve the performance of SystemC emulation. 

 

4.3 Online SystemC Emulation Architecture 

4.3.1 Base Architecture with Acceleration Engines 

A SystemC emulation architecture enables the execution of SystemC descriptions on real 

platforms without the need to synthesize/map for the particular platform, by executing an 

intermediate form of SystemC called SystemC bytecode.  Figure 26 shows a basic 

SystemC emulation platform. The platform consists of a main processor that executes the 

Figure 26:  SystemC emulation platform. A limitation of the SystemC emulation platform is that the acceleration engines 
and the SystemC kernel within the emulation platform are connected via a single bus structure, thereby creating a 
bottleneck for shared memory usage when multiple processes (p1, p2, p3) are scheduled in parallel, hindering 
performance.  
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SystemC kernel, which is a combination of a virtual machine and event-driven kernel. 

The SystemC kernel connects to the platform’s peripherals (memories, lights, buttons, 

timers, general I/O) through a shared bus, allowing a SystemC description full access to a 

variety of peripherals.     

For the common situation where the emulation engine is implemented on (or with 

access to) an FPGA, the SystemC kernel can offload process emulation to a SystemC 

acceleration engine. An acceleration engine, shown in Figure 27(a), consists of a MIPS-

like datapath, communicates with the SystemC kernel via memory-mapped registers, and 

executes SystemC bytecode orders of magnitude faster than the SystemC kernel. 

 

Figure 27: SystemC acceleration engines: (a) Internal structure. (b) Direct connection of two SystemC acceleration 
engines using a kernel bypass connection. In some situations, bypassing the bus and SystemC kernel can lead to 
significant performance benefits for a given SystemC description.   
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4.3.2 Kernel Bypass 

We observed that the SystemC emulation platform possesses a memory bottleneck when 

both the main emulation kernel and the SystemC acceleration engines attempt to read and 

write the shared signal memories, as highlighted in Figure 26. To mitigate the memory 

bottleneck, we introduce kernel bypass connections, which are direct one-way 

connections between neighboring accelerators that allow the SystemC accelerators to 

communicate without having to read and write their values to shared memories on the 

system bus. Figure 27(b) shows the kernel bypass architecture for two SystemC 

accelerators. An additional advantage of kernel bypass connections is that the emulation 

kernel also reduces some overhead of maintaining the event queue since the writing 

accelerator can directly flag the reading accelerator to start execution once the writing 

accelerator is done.  

To facilitate direct communication between two neighboring accelerators, we add 

a SystemC kernel-controlled configuration register and small signal cache. A signal 

cache is a small memory data structure that holds a signal identifier, the signal’s value, 

and a valid bit. If an accelerator is configured to be a kernel bypass reader, the 

acceleration engine will instead first look for a signal value in signal cache prior to 

fetching the value from the signal memory on the bus. Similarly, if a SystemC accelerator 

is configured as a kernel bypass writer, the SystemC accelerator will write to the 

connected accelerator’s signal cache by sending the signal’s ID and its current value. In 

contrast to the system bus which can take tens of cycles, the signal cache allows one-

cycle signal writing and retrieval.  For each simulated time step, a utilized kernel bypass 
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connection can save between tens and hundreds of cycles, depending on the number of 

signals written to and read from. 

The signal cache size is currently limited to ten signals. If two processes 

communicate with more than ten signals, the two processes must communicate through 

the bus-connected signal memories. Processes that communicate with more than ten 

signals can still see some speedup because ten read and writes to the system bus are 

eliminated every simulated time step. 

 

4.4 Online Acceleration Assignment 

4.4.1 Problem Definition 

We define the Online SystemC emulation acceleration problem as follows. Given are: 

- A process set P = {p1, p2, p3, ..pn} containing the n processes that comprise a 

given SystemC description.  

- A set of execution times Tp = {tp1, tp2, tp3,… tpn} containing the execution 

time of each process i running on the SystemC  kernel without communication overhead.   

- A set of execution times Tc = {tc1, tc2, tc3...,tcn} for each process i when 

running on a SystemC acceleration engine; the times do not include communication 

overhead.  

- A set of sizes S = {s1 ,s2, s3,…, sn} giving the size of each process i  in terms of 

number of bytecode instructions..  

- The total number of acceleration engines AE in the SystemC emulation 

framework. 
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- The time to load one instruction into a SystemC acceleration engine TR.. The 

total time to load an acceleration engine with process i can be thus be written as:   loading 

time(i) = TR*si 

 

The online SystemC emulation acceleration problem must satisfy the following 

constraints:  

- Processes running on the SystemC kernel and on the acceleration engines may 

run in parallel, unless that process is the same process i. For instance, in the queue <p2, 

p1, p1, p1, p3>, the three instances of p1 must execute sequentially, but p2 and the first 

instance of p1 can run in parallel. 

- The SystemC kernel cannot be interrupted to run a process when the SystemC 

kernel is loading a process onto an acceleration engine or when the SystemC kernel is 

itself running a process. 

 

We define several additional constraints to the online SystemC emulation 

acceleration problem that take advantage of the number of kernel bypass connections 

within the SystemC emulation framework: 

 

- A set O of process pairs (Oi, Oj) that satisfy the condition that all of the inputs 

into Oj are outputs from Oi. These process pairs can be determined statically and sent to 

the SystemC kernel at download time 
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- Number of kernel bypass connections: The number of kernel bypass connections 

in the SystemC emulation platform 

- Kernel bypass connection pairs: For each Kernel bypass connection, there exists 

two acceleration engines AEi and AEj that the connection is made up of 

- Number of signal connections between each process pair (Oi, Oj) 

 

The dynamic input to the problem is an event queue Q, such as <p2, p1, p4, p2, 

p1, p1….>, that lists and orders the process instances that run on the platform for a given 

time step.   

The Online SystemC Emulation Acceleration problem is defined as an online 

problem: For each process in the event queue, using only knowledge of prior and current 

processes in the queue, determine whether to load that process into a SystemC 

acceleration engine, such that the time for the entire event queue (including future 

instances of the process in the queue) is minimized.  When a process is already loaded 

into a SystemC acceleration engine, we refer to the process as being acceleration engine 

resident. The current process is the process that at a given time is to be executed next and 

for which the acceleration engine load determination must be made. Thus, the solution to 

the online SystemC emulation acceleration problem consists of an acceleration engine 

management decision for each process instance in the event queue. Each decision is 

either: load, don’t load, or already loaded. For a decision to load, the decision also lists a 

process that must be unloaded to make room for the new process being loaded. 
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4.4.2 Communication Overhead 

The SystemC accelerators communicate with the SystemC kernel through memory 

mapped registers and signal memories, which store the current and next values of each 

signal in the SystemC description. We use queuing theory [55] to estimate average 

memory access delay, and model memory contention by the M/M/1 queue. The processes 

in the SystemC kernel and in the SystemC acceleration engines generate memory access 

requests through READ and WRITE bytecode instructions. We define the following:  

 

- Random memory access rate: The random memory access rate is the number of 

times a process i reads from memory, where λi is the memory access rate of running 

process i.  

- Bus service rate: µ. The bus service rate is the number of requests the system bus 

can process in a second. E.g. Assuming a 100Mhz memory bus, one access takes 20 

cycles, so µ=5M/s. 

- Average delay: The average delay is the number of cycles for one memory 

access. According to queuing theory, average delay for one access is D=λ/(µ(µ-λ)).  

- System delay: delay =  Dλ. 

 

4.5 Online Heuristics  

4.5.1 Upper and Lower Bounds 

An upper bound on total execution time can be determined by running every process on 

the SystemC kernel. A lower bound can be determined by assuming every process is 
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preloaded onto an infinite set of existing SystemC acceleration engines, and considering 

communication overhead, referred to as the Infinite Accelerators. 

 

4.5.2 Accelerator Static Assignment 

To see the advantage of dynamically loading bytecode to the SystemC 

acceleration engines for higher performance emulation, we compare to a statically 

preloaded approach, which assumes the SystemC acceleration engines are initially loaded 

with one process’s bytecode each, and are not reloaded during runtime. At the beginning 

of SystemC emulation, the SystemC kernel assigns each acceleration engine a process to 

always execute when an instance arrives on the event queue. The acceleration engines are 

loaded with the processes that have the largest speedup potential (tpi-tci). Compared to 

dynamic techniques, the benefits of static accelerator assignment are one-time 

acceleration engine loading, and a simpler emulation event kernel. The drawbacks are 

that there might only be a few acceleration engines, and running the rest of the SystemC 

processes on the software SystemC kernel could be computationally expensive. An 

alternative method for static assignment would have been to utilize profile information to 

predict which processes execute most frequently. However, due to simulation 

complexity, profiling information was not available. 

 

4.5.3 Greedy Heuristic 

A greedy heuristic can be defined that always loads the current process into a SystemC 

acceleration engine before executing. If the process is acceleration engine resident, the 
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SystemC kernel just instructs the SystemC acceleration engine to begin executing. 

Otherwise, the SystemC kernel randomly chooses an idle SystemC acceleration engine to 

load the process’ bytecode instructions. In the case that all the SystemC acceleration 

engines are busy running, the emulation kernel will wait until the one of the acceleration 

engines becomes idle. The time complexity of the greedy heuristic is O(1). However, the 

greedy heuristic may incur lots of loading overhead since it loads a SystemC acceleration 

engine with bytecode on every execution. Further, the greedy heuristic attempts to use all 

the available acceleration engines, which increases the amount of communication 

overhead on the system bus. 

 

4.5.4 Aggregate Gain 

We use the aggregate gain (AG) heuristic introduced in [72] to address the online 

SystemC emulation acceleration problem. The AG heuristic uses the history of 

application executions to attempt to predict future executions and hence to predict when 

reconfiguration overhead is worthwhile. The AG heuristic considers reconfiguration and 

communication overhead. The basic idea of AG is that we maintain an aggregate gain 

table for each process type running in the system. The gain is the time saved by running 

the process instance with the accelerator. The AG table gets updated when a new process 

arrives. The AG table shows which processes make most of the gains by running in the 

SystemC acceleration engine. 

Sequences of processes on the event queue often exhibit temporal locality—

recently-executed processes are more likely to execute in the near future than are 
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processes from long ago. A fading factor f is introduced to refresh the AG table. f is 

adaptive to the average loading time. The intuition of the loading, replacement and wait 

decision is to make the total gain of the acceleration engine resident processes high. Thus 

the load, replace and wait decisions will be made only if the decision would not decrease 

the total gain resident processes. 

We can alter the AG heuristic to support the additional kernel bypass feature. The 

modified AG heuristic treats tightly coupled processes as one large process. The large 

process takes multiple acceleration engines and we assume the acceleration engines of the 

large process must be loaded together. The load, replacement, and wait policies of the 

large process are similar to the definitions in original AG heuristic. 

 

4.6 Experiments  

4.6.1 Framework 

We developed a simulator in C++ to test our heuristics, and applied the simulator to 

several SystemC descriptions. We also fully implemented two SystemC emulation 

platforms, one on a Xilinx Virtex4 Ml403 development platform, and one on a Xilinx 

Virtex5 vlx110t development platform. The SystemC kernels ran on a PowerPC and 

Microblaze processor respectively, both operating at 100MHz. The SystemC kernels 

communicate to the acceleration engines and the rest of the peripherals through the PLB 

bus. The average memory access time is 40 cycles. The SystemC kernel uses a 

handshaking protocol over the PLB bus to communicate and load instructions into each 

of the acceleration engines. The total time to load one instruction (TR) onto an 
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acceleration engine is approximately three microseconds. The Virtex4 Ml403 

development platform could hold one acceleration engine, and the Virtex5 vlx110t 

development platform could hold three. For two of the accelerators in the Virtex5 

vlx110t, we connected them for kernel-bypassed enabled execution. One accelerator was 

configured as a reader, and one was configured as a writer. We chose this configuration 

because many of the image processing SystemC circuits mapped to this architecture well. 

The kernel bypass circuitry only consumed a few hundred more slices than the core 

acceleration engine. The SystemC emulation kernel was written in approximately 2500 

lines of C code. The online heuristics consisted of only a few hundred lines of code.  

We applied our heuristics to an image filtering system (including a blur filter, an 

emboss filter, a sharpen filter, and several implementations of edge detection), a digital 

lung model [107], and a reconfigurable radiosity design [7]. We wrote the image filters, 

Figure 28: Emulation runtime results of image filtering, lung, and radiosity examples emulated on two different 
emulation platforms.  AG performs up to 9x faster than software-only emulation, and 5x faster than a statically preloaded 
approach.  

 
 
 

0

500

1000

1500

2000

2500

3000

Virtex Ml403 Virtex5 VLX110t

M
ill

se
co

n
d

s

  

Software-only Greedy 

Lower bound      

Statically 
preloaded 

AG 

5150 4900 

(1 Accelerator) (3 Accelerators) 

48 32 



81 

lung model, and reconfigurable radiosity design in SystemC, capturing each design using 

multiple processes. We modeled several dynamic scenarios in which the image filters, 

lung model, and radiosity design might be used.  

For all experiments, because sequences involve some random ordering, we 

generated 20 sequences, and report the arithmetic average. The heuristic runtimes were 

negligible. 

 

4.6.2 Evaluation 

Figure 29 shows total execution times of a suite of SystemC image processing, lung, and 

radiosity descriptions running on Virtex4 Ml403 and Virtex5 vlx110t implementations of 

the SystemC emulation framework without the kernel bypass mechanism enabled.  

For the Virtex4 Ml403 implementation, the statically preloaded accelerator 

approach yielded ~1.5x speedup compared to software-only emulation (i.e., only running 

on the SystemC kernel and no acceleration engines). The greedy heuristic results in a 

slowdown of 50% compared to software-only emulation. This is because the greedy 

attempts to reconfigure the accelerators without consideration of the high reconfiguration 

cost of downloading new bytecode instructions. The dynamic AG approach yields more 

speedup. The execution time AG obtains over software-only emulation and a statically 

preloaded approach is 3.5x and 2.3x respectively. AG performs approximately 7x faster 

than the greedy heuristic.  

For the Virtex5 vlx110t implementation, the statically preloaded accelerator 

approach yielded ~1.75x speedup compared to software-only emulation. Compared to the 
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Virtex4 Ml403 implementation which only had one accelerator, the nominal speedup 

achieved with the Virtex5’s three accelerators was unexpected, and could have resulted 

due to a poor mapping between processes to accelerators.  The penalty could also have 

been due to increased communication costs on the system bus. The greedy heuristic was 

again about 50% slower than software-only emulation because of the high cost to reload 

the acceleration engines with new bytecode instructions. The AG heuristic performed 9x, 

5x, and 18x better than software-only emulation, statically preloaded, and greedy 

solutions respectively. The AG heuristic takes the accelerator reloading cost into account 

and thus decided not to reload the accelerators every time there was a new process on the 

event queue.   

Comparing with the Infinite Accelerators lower bound (i.e., all processes are 

accelerated and without the need to reload the bytecode instructions onto the accelerator) 

shows that the AG heuristic obtains execution times on average within 15x slower on a 

Figure 29: Emulation runtimes without and with kernel bypass using the AG heuristic on the image processing 
examples. Kernel-bypass-enabled emulations performed on average 11% better than without kernel bypass, and up to 
20% in some examples.  
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platform with one accelerator because of the high loading time, and 8x slower on a 

platform with three accelerators of this lower bound.  The lower bound solution does not 

need to contend with the high reconfiguration time the other heuristics do. Future work 

could look into modifying the architecture for decreased reconfiguration times. 

Figure 29 shows the effect of enabling a kernel bypass connection between two 

accelerators on the Virtex5 vlx110t emulation platform (the Virtex4 Ml403 could only 

hold one acceleration engine, so kernel bypass was non-applicable). On average, the 

SystemC examples improved their speedup by 11%. Blur and Sobel2 achieved 20% 

speedup with kernel bypass because they contained a few processes that had heavy 

communication. Other examples like the Lung and Radiosity only improved by a few 

percent. This was because the inter-communication between processes was light. More 

kernel bypass connections could increase performance by more significant gains. 
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Chapter 5  

Just-in-Time Compilation of SystemC 

5.1 Overview 

The previous two chapters detailed the SystemC-on-a-Chip framework, enabling portable 

execution of SystemC applications on any platform the supports the SystemC emulation 

engine, and SystemC accelerators and kernel bypass mechanisms that could substantially 

increase the performance of SystemC emulation with dynamic system optimizations.  

However, the acceleration engines require FPGA resources. We take a different approach 

to speedup, wherein we just-in-time compile the SystemC bytecode into native 

instructions of the soft-core processor, as shown in Figure 30(b). Just-in-time compilation 

has been used with wide success to speed up emulated commercial applications in the 

CLR format (from C#) and Java bytecode, for PC-based platforms [83]. Our work is the 

first JIT approach for an FPGA soft-core processor.  

More significantly, however, is that JIT for an FPGA soft-core processor provides 

even more optimization possibilities than JIT for a traditional processor. The reason is 

because the soft-core processor architecture can be changed. As such, we could carry out 

an iterative process, whereby after creating an initial JIT compiler, we could analyze 
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system performance to detect the new performance bottleneck. We could then change the 

processor architecture in order to alleviate that bottleneck, modify the JIT compilation 

accordingly, and repeat until no further improvements were found, as shown in Figure 31. 

The resulting JIT compilation, with the architecture containing JIT-aware resources as 

illustrated in Figure 16(c), showed substantial further speedups over the original JIT 

compilation. 

 

 

 

Figure 30: While the performance of the base SystemC emulation engine is acceptable for some applications, for others it 
is not (a). Just-in-time compiling the SystemC bytecode to the emulator’s memory improves performance (b), but can be 

made to be competitive with custom implementations if the emulation engine is made JIT aware (c). 
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5.2 Related Work 

There has been much previous work in the field of dynamic binary translation and just-in-

time compilation to improve the performance of software interpretation. Of the many 

techniques to improve execution of Java bytecode, just-in-time compilation often 

improves execution runtimes to near native speeds [83].  The Transmeta Crusoe 

processor [38] dynamically translates x86 code into native VLIW instructions for 

improved performance and reduced power. Other architectures, like accumulation-based 

computer architectures [84], have also benefited from just-in-time compilation 

techniques. Gligor [54] used dynamic binary translation to improve the speed and 

flexibility of MPSoC simulations. 

There has been an increased amount of work done to improve virtualized software 

execution with supporting hardware.  Adams [2] presents a survey of techniques for 

improving x86 virtualization execution, discussing both software and hardware 

optimizations.  Rosenblum [117] discusses the advantage of hardware-level virtual 

machines, and the need to make them as fast, efficient, and transparent as possible. Enzler 

Figure 31: The JIT/architecture codesign process.  
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[45] uses reconfigurable arrays to virtualize hardware.  Bauer [12] uses reconfigurable 

arrays to improve the execution time of event-driven simulation. 

 

5.3 Experimental Setup 

For the upcoming experiments in this paper, we built three complete SystemC-on-a-Chip 

platforms, each with differing memory subsystem implementations, and differing 

performance profiles. We built one system on a Xilinx Spartan 3E FPGA platform that 

required that the SystemC engine reside in DRAM memory. We built a SystemC engine 

on an SRAM-based memory structure on the Virtex4 Ml403 development platform. 

Finally, we implemented the SystemC emulation engine on a larger Virtex5 vlx110t, and 

shown in Figure 32(a). The Virtex5 implementation also executed from a large SRAM. 

To highlight the benefits of the new emulation architecture changes, we built two 

versions of each platform, one with the dedicated just-in-time emulation architecture 

changes, and one without. Each system is briefly summarized in Figure 32(b). The 

emulation architectures were described using approximately 10,000 lines of VHDL. We 

wrote the SystemC emulation using approximately 3,000 lines of C. The emulation 

architectures were built using Xilinx ISE 11, and the software was compiled using Xilinx 

EDK 11. 
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We picked a variety of benchmarks to test our SystemC just-in-time compilation 

approach. The benchmarks range from image processing applications like Sobel edge 

detection to encryption algorithms like an A5/1 stream cipher. We carefully chose 

applications with varied amounts of complexity to show where just-in-time compilation 

for SystemC excels and where it doesn’t. To compare the speed of the JIT compiled code 

with an “upper bound,” we rewrote each benchmark directly in C code (not SystemC), 

performing a manual scheduling of processes so as to eliminate the need for the 

scheduling done in the SystemC simulation kernel. The C descriptions are less intuitive 

than the SystemC descriptions, and the parallelism in the application is less exposed, but 

the C descriptions provide an upper bound as to how fast the SystemC bytecode could 

possibly execute on a Microblaze—essentially, the C code strips away all SystemC 

overhead and describes just the application code. We compiled the C descriptions directly 

to Microblaze machine code using the Xilinx tools and the highest levels of optimization 

(O3). We refer to this implementation as native software.   

Figure 32: Experimental Prototypes. (a) The Virtex5 vlx110t implementation connected to a large screen buffer for testing 
image processing applications.  (b) A summary of each experimental system. Each version was built with and without 

dedicated hardware to improve the impact of just-in-time compilation of the SystemC bytecode. 
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5.4 Just-in-Time Compilation of SystemC 

We began by profiling the SystemC emulator’s execution for the benchmarks. Figure 33 

shows, which clearly show that the virtual machine executing on the Microblaze 

contributes to most of the execution time, namely 73%; the other contributors relate to 

architectural features. The virtual machine’s dominance is due to each bytecode 

instruction requiring dozens of Microblaze instructions to execute. Just-in-time 

compilation from bytecode instructions directly to Microblaze instructions should thus 

greatly decrease that time, because almost all SystemC bytecode instructions can be 

translated to just 1 or 2 Microblaze instructions. 

 

5.4.1 Compilation 

Just-in-time compilation from the SystemC bytecode to the target platform is 

Figure 33: Results of our initial profiling of the SystemC bytecode emulator. 
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straightforward. The SystemC just-in-time compilation process consists of three analysis 

phases and three translation passes.  The first analysis phase determines how many 

instructions each source SystemC bytecode instruction will require in the target 

architecture. The second analysis phase determines which bytecode registers depend 

upon values from previous executions of the process. The third analysis phase determines 

which register conventions might be violated by naïvely translated code – for instance, 

any registers that must be saved across function calls should not be overwritten.   

The first translation pass directly copies bytecode instructions to appropriate 

locations in the JIT memory, which can be calculated from the information gleaned in the 

first analysis phase. The second pass translates each bytecode instruction, which also 

requires information from the first analysis phase (to recalculate relative branches). The 

third pass adds a function prologue and epilogue to ensure compliance with the emulation 

engine and architecture register conventions, which requires the information from the 

latter two analysis phases. 
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5.4.2 JIT Compilation with Dedicated JIT Memory Resources 

Unfortunately, straightforward just-in-time translation often results in unimpressive 

performance improvements.  There are a number of reasons for this, but perhaps the most 

obvious is the emulation memory architecture.  The entire emulation engine requires a 

large instruction memory, heap, and stack, and does not lend itself easily to small, fast 

memories (which are often very limited, and sometimes non-existent)  Thus, the 

emulation engine usually resides in a larger, slower memory (e.g., DRAM, or SRAM).  

Naïvely placing the native code resulting from just-in-time compilation back into this 

same memory shows performance improvement, but this improvement will be greatly 

hampered by memory latency. 

Figure 34: Modifications to the SystemC emulation engine that increase the utility of just-in-time compilation. The new 
SystemC emulation engine supports a local memory bus with a dedicated JIT memory and a static signal queue for fast 

access to commonly executed software operations (a).  The new SystemC emulation engine also has a dedicated 
emulation memory controller, which offloads costly memory updates from software, and magnifies the impact of just-in-

time compilation 
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We observed that since the native code returned by the just-in-time compilation 

process is much smaller than the emulation engine needed to execute bytecode, the 

SystemC emulation engine would benefit from using a small fast memory dedicated for 

storing the just-in-time compiled native code, as shown in Figure 34(a).  The dedicated 

JIT memory directly connects to the base SystemC kernel via a local memory bus, can 

hold small amounts of natively translated SystemC code, and can execute orders of 

magnitude faster than the original interpreted SystemC bytecode. The just-in-time 

compiled code is also several times faster than translated code executed from the original 

slower memory.   

We implemented the just-in-time compilation routines in approximately 1,500 

lines of C. For our experiments, we assume the emulator can just-in-time compile the 

entire SystemC application to the dedicated just-in-time memory. Of course, assuming 

enough just-in-time memory isn’t necessarily a constraint as the emulator can fall back 

on just-in-time compiling the SystemC bytecode to the larger, slower memory resources 

and still see performance improvement. For each example, the emulator just-in-time 

compiles the SystemC circuit to the dedicated memory prior to emulation execution.  The 

time required to just-in-time compile is a one-time cost, and runs in milliseconds, even 

for large System C applications. Future work might investigate methods for just-in-time 

compiling dynamically as the SystemC application is running.  
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Figure 35 shows the advantages of using just-in-time compilation for SystemC 

emulation on the Virtex5 development platform for a number of SystemC applications. 

For each example, we compare just-in-time compilation to an implementation of the 

SystemC emulation engine implemented entirely in DRAM. We also compare the just-in-

time compiled version to an implementation of the application running natively on the 

development platform. The results for the Spartan 3E and Virtex 4 SystemC emulation 

implementations were similar to the Virtex5 implementation. Figure 35 shows results 

running JIT compilation using dedicated JIT memory resources compared a more 

straightforward approach using the platform’s normal resources. On average (geometric 

mean), JIT compilation with dedicated resources achieves approximately 4X speedup 

compared to base emulation, and 1.6X speedup compared to just-in-time compiling to the 

emulator’s same memory resources.  For computationally intensive SystemC 

applications, like the digital timer, just-in-time compiling to dedicated JIT memory 

resources resulted in over 100X speedup. For others, like the electronic lock, the 

Figure 35: JIT compilation with dedicated JIT resources performed 4X faster than the base SystemC emulation 
platform, yet still fell short of native software implementations by another 10X. 
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speedups we less impressive. While still achieving 1.5X speedup, the electronic lock 

lacked computationally challenging routines, meaning other components of the SystemC 

emulator became a new bottleneck. 

 

5.4.3 Emulation Memory Controller 

Dedicated just-in-time memories improved the performance of SystemC emulation by 

over 4X on average. However, the improved performance still fell short of the software 

running natively on the development platform by 10X. While this can partly be explained 

by the different software implementations required for the native platform (sequential 

implementation) compared to the original SystemC implementation (structural and spatial 

implementation), a more concerning factor was the overhead the emulation engine 

incurred managing queue and memory resources to preserve correctness of the SystemC 

application, shown in Figure 33. 

To facilitate the described just-in-time compilation techniques, we introduce 

several additional architectural changes to the base SystemC emulation engine, shown in 

Figure 34. The new architectural changes address the remaining 27% of the software time 

spent concerned with updating the read and write signal memories, and maintaining the 

signal and event queues, and thus greaten the impact of replacing the just-in-time 

compiled SystemC bytecode with the interpreted code of the SystemC virtual machine. 

The first change to the SystemC emulation engine is the addition of dedicated fast 

memory connected directly to the processor to act as the new signal queue. Original 

implementations dynamically managed the signal queue, making unnecessary low-level 
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memory allocation calls. We observed that the signal queue is bound in size by the size of 

the read and write signal memories, and thus decided that a statically created memory 

would mitigate the effect of dynamic signal queue management. We also observed that 

instead of enqueueing and dequeuing signals to and from the signal queue, the emulation 

engine only needed to store a signal identifier, reducing the overhead on the bus to which 

the signal queue is attached to the processor.  

We further observed that signal queue maintenance (15%) and updating 

memories (7%) were a series of interleaving function calls that worked with highly 

dependent data (updating the write and read signal memories involved enqueuing the 

signals that changed values), we could offload the tasks of updating the memories and the 

maintenance of the signal queue to a dedicated emulation memory controller. On 

completion of a delta time step, the emulation engine kernel commands the emulation 

memory controller to update the signal memories and populate the signal queue. The 

emulation memory controller iterates over the write signal memory, finds any signals that 

have been updated, updates the read memory signal value, and adds the updated signal to 

the signal queue.  The actions can be pipelined, meaning that the emulation memory 

controller can check, update, and enqueue every signal in the system in one pass.  For a 

typical SystemC application with 40-50 signals, the emulation memory controller can 

finish updating all signals in 40-50 cycles. This is in contrast to a software approach 

which requires high hundreds-thousands of cycles for the same SystemC application.  
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Dedicated just-in-time memory resources improve performance, but are limited 

by software calls to manage queue and memory resources. Fortunately, for FPGA 

platforms the software can be replaced by a dedicated signal queue and memory 

controller, which can update the signal queue and the signal memories in tens of cycles 

(compared with hundreds to thousands). Figure 36 shows the effect of including the 

dedicated JIT aware resources into the SystemC emulation architecture. The results are 

again shown using the Virtex5 vlx110t as the example development platform. The results 

compared just-in-time compilation running in dedicated JIT memory resources with and 

without the additional JIT Aware resources. On average, just-in-time compilation with 

JIT Aware Resources improved execution times by 10X compared to the base emulation 

architecture, and by 2.5X compared to JIT compilation without JIT aware resources. 

Again, for computationally demanding applications, JIT compilation with JIT Aware 

resources could actually attain better execution times than the native application. This is 

Figure 36: JIT Compilation with JIT Aware Resources speeds execution by 10X compared to base emulation, and by 2.5X 
compared to JIT compilation without the same resources. 

 

0
10
20
30
40
50
60
70
80
90

Edg
e 

Det
ec

tio
n

Digi
ta

l T
im

er

M
at

rix
 M

ult
ipl

y

Elec
tro

nic
 L

oc
k

A5/
1 

Ciph
er

Seq
ue

nc
er

Ave
ra

ge

No JIT Aware Resources

With JIT Aware Resources

Native SW

 



97 

due to the fact the computationally demanding SystemC application now runs in local 

fast BRAM memories, and the native application still executes in slower memory 

resources. For other applications, the speedup isn’t quite as dramatic, but JIT compilation 

with JIT Aware resources comes with 4X of native application execution on average. 
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Chapter 6  

Just-in-Time Synthesis of SystemC  

6.1 Overview 

The performance of SystemC emulation can be improved greatly using online bytecode 

acceleration and just-in-time compilation techniques, but still pales in comparison to the 

potential of native FPGA implementations. While SystemC bytecode accelerators are 

able to expose some of the parallelism present in the SystemC application, each process 

is still executed temporally, greatly limiting opportunities for high-performance FPGA 

speedups (and the reason the SystemC application might have been written in the first 

place).  

Analogous to Java-like approaches where just-in-time compilation can improve 

application execution times by orders of magnitude by a translation of the bytecode to 

native platform instructions, the availability of FPGA resources on platforms that support 

the SystemC-on-a-Chip framework lend themselves to being utilized for native execution 

of the SystemC application.. Figure 37 illustrates just-in-time synthesis of SystemC 

applications to a native FPGA implementation. 
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We introduce a transparent, server-side just-in-time synthesis framework to the 

SystemC-on-a-Chip framework that can override software emulation of SystemC 

applications and instead execute the application natively, yielding orders of magnitude 

speedups improvement over software emulation, and faster performance than native PC 

simulation. We demonstrate the usefulness of the framework by developing a full 

prototype for the Xilinx Virtex4 Ml403 development board using partial reconfiguration.   

 

6.2 Related Work 

There has been a large body of work devoted to decompilation. Many efforts used 

decompilation to port legacy binaries to updated computer architectures, to convert 

Figure 37: Just-in-Time Synthesis of SystemC applications leads to natively executing applications that can run 
orders of magnitude faster than baseline simulation and several times faster than PC simulation.     
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binaries between two different languages, and to document and maintain applications 

written in assembly.  Software developers have also used decompilation as a debugging 

tool for assembly code, by recovering a high-level representation that is easier to check 

for errors. A more complete treatment of decompilation can be found in [31]. We use 

decompilation techniques for synthesis first proposed by Stitt [131]. 

Increasingly powerful FPGA platforms (and more usable tools) have made partial 

reconfiguration more attractive and the subject of much research. Horta [71] describes the 

use of dynamic plug-ins for FPGAs with partial run-time reconfiguration support. Forin 

[132] uses partial reconfiguration to create an extensible MIPS-like processor called 

eMips. Emmert [44] uses partial reconfiguration for fault tolerance purposes.  

Approaches for dynamic software optimization and binary translation have been 

proposed to maintain binary compatibility, to reduce compilation time, and to perform 

runtime optimizations. Dynamo [10] is a dynamic optimization approach that profiles an 

application during execution to determine frequent paths, optimizes the code for those 

paths, and stores the optimized code in a special fragment cache. When software 

execution reaches a frequent path, the microprocessor fetches instructions from the 

fragment cache to execute the optimized code. FX!32 [28] dynamically translates x86 

binaries into Alpha binaries by first emulating the application and profiling to determine 

frequent regions that should be translated to native Alpha instructions. BOA [56] 

dynamically translates PowerPC instructions into smaller microinstructions that can be 

more easily pipelined and scheduled in parallel. BOA also detects frequent paths, 

performs path-specific optimizations, and translates paths from PowerPC code into native 
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VLIW code. The IA-32 execution layer for the Itanium microprocessor uses software to 

convert IA-32 instructions into native Itanium instructions [11].  Warp processing 

[93][94][129][131] has demonstrated the feasibility of performing binary synthesis at 

runtime, allowing binary synthesis to also take advantage of runtime information to 

optimize hardware. 

 

6.3 Just-in-Time Synthesis  

6.3.1 Server-Side Synthesis Framework 

We investigated two options for synthesizing SystemC applications native platform 

execution. One option is to utilize another local processor within the SystemC-on-a-Chip 

framework to perform synthesis, place and route, and mapping for the platform. Lysecky 

and Stitt [93][94][131] showed that the computationally complex algorithms used by 

synthesis and place and route can be made lean enough to run on a small Arm7 processor. 

However, they assumed a simple architecture model with a much-reduced complexity 

FPGA platform. Modern FPGAs are so complex that they render on-chip synthesis with a 

small embedded processor infeasible, and instead require powerful computing platforms 

to perform the synthesis process.    

Another option is to use an external server to perform the complex synthesis 

process. The server-side approach requires an internet connection, but this is plausible as 

most modern FPGAs platforms have existing internet connectivity, or can be 

programmed to have such behavior.  Figure 38(a) shows server-side synthesis for 

SystemC-on-a-Chip. A SystemC application initially runs on the platform using the 
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emulation techniques described in previous chapters. If additional performance is 

required, the emulation engine sends the currently executing SystemC bytecode through 

the internet connection to a remote server. The remote server converts the SystemC 

bytecode to a circuit representation, performs synthesis, place and route, and mapping, 

and finally sends the updated bit stream back to the FPGA platform. The new bit stream 

overrides execution of the emulation engine, and executes as a native implementation. 

The server approach is not limited to an external remote server. The approach also works 

in the case where an FPGA platform is directly connected to a PC platform, like Intel’s 

QuickAssist Technology, in which case the PC can perform synthesis externally. 

There are several advantages to performing synthesis for SystemC applications 

running on SystemC-on-a-Chip. The first is performance. After some initial time spent 

sending the SystemC bytecode to the server to be converted, synthesized, and sent back, 

the SystemC application can potentially run orders of magnitude faster than when 

running the base SystemC emulation engine, and also faster than simulating the same 

SystemC application on a desktop PC. The second advantage is the synthesis process is 

completely transparent to the SystemC application designer. The SystemC application 

designer does not to need to use costly, difficult, and hard-to-use synthesis flows that 

often differ greatly from traditional compilation flows (of which the SystemC-on-a-Chip 

flow follows). Instead, the SystemC application immediately runs on the emulator using a 

more traditional compiler, and if needed, will transparently synthesize itself to a circuit 

that takes advantage of the available FPGA resources. 
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There are also a several disadvantages to the server-side just-in-time synthesis 

approach. One disadvantage is that the server-side synthesis approach can be slow. In 

extreme cases, the server may finish generating a native platform after the emulated 

circuit has finished executing. Synthesis, place and route, and mapping are complicated 

NP complete problems, and often require extensive resources (and time) to complete. For 

such situations, the SystemC-on-a-Chip platform would not be able to take advantage of 

the native implementation. The server-side approach can be beneficial for long-running 

SystemC applications or scenarios where a SystemC application repeatedly executes. 

While the first execution instance may not take advantage of the newly-created native 

Figure 38: Just-in-Time Synthesis SystemC-on-a-Chip framework.  (a) The server responds to requests from 
SystemC-on-a-Chip platforms that require native execution speeds. (b) The server decompiles the SystemC 

bytecode, recovers the high-level information, and synthesizes a circuit tuned to that platform’s available resources.  
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bitstream, repeated executions could immediately take advantage, resulting in on average 

high performance SystemC execution. Such cases lend well to a server-side approach. 

 

6.3.2 Decompilation and Synthesis 

The server-side synthesis framework requires methods to recover high-level information 

from the SystemC bytecode in order to generate a high-performance circuit. With 

modifications, we use Stitt’s binary synthesis/decompilation [131] tools to recover and 

generate RTL VHDL for the SystemC application. Shown in Figure 38(b), the 

decompilation tools perform dataflow and control flow analysis, scheduling, and generate 

RTL VHDL to input into commercial synthesis and place and route tools.  

The decompilation tools required some modifications. The major modification 

required modifying the tools to accept a binary (the SystemC bytecode) that already has 

explicit parallel constructs, and maintain those constructs through the optimization 

process. For instance, if a SystemC application was written using two explicit processes 

with custom communication, the decompilation tools must preserve those connections, 

while still correctly optimizing the behavior of each process.  A more complete 

description of the optimizations performed by the decompiler can be found in [131]. 

The output of the decompilation framework is RTL VHDL. The VHDL is input 

into a commercial synthesis tool framework that generates a partial bit stream. The partial 

bit stream is finally sent back to the SystemC-on-a-Chip framework, the bit stream is 

downloaded, and begins execution as a custom implementation. 
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6.3.3 SystemC-on-a-Chip Architectural Support 

We considered two options on how best to override the emulation engine once synthesis 

has completed. The first option is to create a fully custom bit stream that completely 

erases the emulation engine architecture and takes control of all of the platform resources 

once downloaded. This approach has the advantage that the SystemC application has 

access to 100% of the resources on the chip, giving potential for a higher performance 

implementation. One disadvantage is the platform must store the emulation engine 

framework in memory for additional uses of the platform, or be forced to download the 

original bit stream for future uses. Another disadvantage is there is the possibility that the 

synthesis job cannot create a custom bit stream for the application, possibly due to area 

constraints, timing constraints, etc. in which case it might be more advantageous to 

synthesize part of the SystemC application to a custom implementation, and leave the 

rest to run on the emulation engine. 

We chose an approach where the SystemC emulation engine remains persistent on 

the development platform, and is overridden at the right time by a just-in-time synthesis 

architecture supported by partial reconfiguration, and shown in Figure 39. For the 

common case where the SystemC-on-a-Chip framework is executing on an FPGA 

platform, a portion of the FPGA platform is now dedicated to be a partially-

reconfigurable region called the just-in-time synthesis support section. The just-in-time 

synthesis support section statically interfaces to the emulation engine, and to a static 

multiplexor that multiplexes the control of the output peripherals. On platform 

initialization, the just-in-time synthesis support is mostly blank, with the exception of a 
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few control bits that control the multiplexor to choose the emulation engine as having 

sole control over the output peripherals, and telling the emulation engine the just-in-time 

synthesis section is empty.  

The SystemC emulation engine sends a request to the server-side synthesis tool to 

create a custom implementation. The server-side synthesis tool is aware of the partially-

reconfigurable configuration, and not only synthesizes a custom implementation of the 

SystemC application, but also generates small pieces of control logic that interface with 

the SystemC emulation engine, and which switch control of the output peripherals to the 

just-in-time synthesis region. 

Figure 39: Just-in-Time Synthesis Architectural Support. The partially-reconfigurable region multiplexes the use of 
the input and output, and can override the execution of the emulator once programmed.  
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The interface between the SystemC emulation engine and the just-in-time 

synthesis region serves several purposes. The first is to instruct the emulation engine that 

the just-in-time synthesis region is ready to execute (thus stopping the emulation engine). 

The second purpose is to transfer a notion of state between the emulated application, and 

the newly-created custom implementation ready to run in the just-in-time synthesis 

region. Without a transfer of state, the newly-created custom implementation must begin 

running, and lose the potential for starting where the emulated application left off.  The 

just-in-time synthesis region also uses the interface to tell the emulation engine whether it 

is emulating all or part of the SystemC application. If the just-in-time synthesis region is 

executing the entire SystemC application, the just-in-time synthesis region will take 

complete control over the output peripherals, and also minimally communicate with the 

emulation engine. If it is only executing part of the SystemC application, the just-in-time 

synthesis region registers the correct SystemC processes into the emulation engine so as 

to maintain correctness, and to instruct the emulation engine to use the custom 

implementations of the desired SystemC processes.  

Using the partially-reconfigurable approach, the SystemC emulation engine can 

persist in the background, potentially allowing other SystemC applications to run as a 

custom implementation uses the partially reconfigurable region. The approach also 

allows the server-side synthesis tools to selectively choose how best to use the SystemC-

on-a-Chip platform, either creating full custom versions of the SystemC applications, or 

only synthesizing parts, and emulating the rest. The tradeoffs include performance, 

complexity of the design, and how many applications the SystemC-on-a-Chip framework 



108 

can independently support. One disadvantage of this approach (compared to deleting the 

emulation engine) is the emulation engine itself is consuming resources that might best 

be used by a custom implementation of the SystemC application.  

 

6.4 Experiments 

We built a full prototyping framework to test and demonstrate the usefulness of 

the just-in-time server-side synthesis framework for SystemC-on-a-Chip. We built our 

prototype using the Xilinx Virtex4 Ml403 development board. We used the 9.2 series of 

Xilinx’s ISE, EDK, and PlanAhead tools to implement the partially reconfigurable region 

for just-in-time synthesis support. We implemented the architectural support for just-in-

time synthesis using an additional several hundred lines of VHDL (mostly for bus macro 

instantiation), and a two hundred lines of C for the emulation engine. 

We built the server-side framework by modifying Stitt’s binary synthesis 

framework to support SystemC bytecode. The original binary synthesis tool was written 

using approximately 30,000 lines of code; the additional SystemC bytecode support 

required approximately 2,000 extra lines of code. For our experiments, we synthesize the 

entire SystemC application, and leave deciding how best to synthesize only parts of the 

SystemC application to future work. The binary synthesis tools generated RTL-level 

HDL code that served as input into Xilinx’s ISE and PlanAhead tools for synthesis, 

placement, routing, and partial bit stream generation. Currently the server-side 

framework only supports one synthesis request at a time, but will be augmented to allow 
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for multiple requests in the future. The server-side decompilation framework was built on 

a 2GHz PC using 2GB RAM.  

We implemented a suite of image processing applications in SystemC, including 

an edge detector, an emboss filter, and a sharpening filter. Each image processing 

algorithm was implemented using various numbers of processes to test the correctness of 

the decompilation framework, and its ability to generate the high performance circuit 

implementations given different SystemC implementations.  Each SystemC application 

was written using the synthesizable subset of SystemC, guaranteeing the decompilation 

framework could create a circuit. Future work might investigate decompiling a less-

constrained version of SystemC bytecode 

Figure 40 shows a comparison of the speedups achieved by online emulation 

acceleration, just-in-time compilation, PC simulation, and just-in-time synthesis 

compared to base SystemC emulation. The data shown is for only one of the image 

Figure 40: Speedups compared to base SystemC emulation for some common image processing filters. Factoring 
out the time required to synthesize the SystemC application, just-in-time synthesis is almost 14,000X faster than 

base emulation, and 30X faster than PC simulation 
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filters. The data for the other image filters was very similar. As shown in earlier chapters, 

just-in-time compilation earns modest speedups compared to base SystemC emulation. 

PC simulation is approximately 400x faster than base emulation, but part of this speedup 

is due to the disparate clock speeds between the PC (running at 2 GHz) and the base 

emulation engine (running at 100 MHz). After just-in-time synthesis, the native SystemC 

application runs approximately 14,000x faster than base emulation and approximately 

30x faster than PC simulation. The speedup over the base emulation engine is due to a 

completely parallel implementation the server created (for each implementation, the 

server side decompilation framework was able to recover and create the same circuit that 

we hand-created from the same SystemC application). Just-in-time synthesis was 30x 

faster than PC simulation because the SystemC application on the PC itself is wrapped 

within a simulation kernel that causes slowdown. The 14,000x performance improvement 

does assume synthesis took zero time. In all three cases, the decompilation and synthesis 

process took approximately 20-30 minutes. In these particular cases, the SystemC 

application still ran on the emulation engine until the new bit stream was created. Once 

bit stream generation finished, there was a noticeable quantitative and visual difference in 

how fast the SystemC-on-a-Chip performed. 
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Chapter 7  

Controlling Time with SystemC Emulation  

7.1 Overview 

Emulation of SystemC applications allow for portable execution over a variety of devices 

and platforms, saving time and programming effort, and allowing a designer the 

opportunity to create a device-independent FPGA application. An additional advantage of 

emulation is the power to start, stop, and control time. Controlling time might allow a 

designer to debug a SystemC application in-system, giving access to internal variables, 

signals, and state of the SystemC application as it running and connected to real 

peripherals.  Such control might be beneficial in a number of domains. We will use the 

development of physiological models for medical device testing as a case study into the 

usefulness of time-controllable SystemC emulation. 

Medical device software is commonly developed using one of several approaches.  

One approach involves modeling on a PC, shown in Figure 41(a). A designer develops 

models for both a medical device, such as a pacemaker or ventilator, and for the 

physiological system with which the device interacts, such as a heart or lung. Such a 

modeling approach supports rapid device software changes, supports simulations that 
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execute faster (or slower) than real-time, and avoids potential safety issues that could 

arise when interacting with an actual physical system.  

A second approach, used after or instead of the modeling approach, runs the 

medical device software on the actual medical device, which is connected to a physical 

mockup on the physiological system. Physical mockups range from simple structures, 

such as a balloon representing a lung, to computerized mechanical parts that dynamically 

react [Michigan Instruments], that can be set to mimic a range of conditions, and whose 

internal sensors can be interfaced to a computer for analysis and debugging.  

One disadvantage of interfacing to off-the-shelf physical mockups is the inability 

to adapt to new features, especially features not easily mimicked via mechanical means. 

Figure 41: Approaches to integrating an embedded device with the physical environment during 
design: (a) system model, (b) physical mockup, (c) digital mockup.     
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For example, a future ventilator may sense human-generated nitric oxide concentrations 

(recently discovered to be significant in respiratory issues [120]) and adapt the output gas 

mix in response. However, no existing computerized mechanical test lung generates nitric 

oxide, nor is it clear how to create one. 

An alternative is to connect the actual medical device to a digital mockup of the 

physiological system. A digital mockup is a behavioral model that emulates the physical 

system.  In such a case, the medical device software executes as if it were interacting with 

a physiological system, but in fact all interaction is through a digital interface, as in 

Figure 41(c). We consider a digital mockup platform with a sensor/actuator bypass 

method of integration [122] as shown in Figure 42(a). Under this scheme, the digital 

mockup taps directly into the information packets that carry the control and data bits to 

and from the device’s sensors and actuators. The digital mockup includes models of the 

physiological system, of the physical connections between the device and physiological 

system, and of the sensors and actuators.  A supervisory system coordinates execution of 

the digital mockup and medical device. The sensor/actuator bypass method is in harmony 

with methods used in industrial “hardware-in-the-loop” practice today, shown in Figure 

42(b). Digital mockups combine the flexibility and faster-than-real-time execution 

benefits of PC simulation models with the advantages of developing software on an 

actual medical device. Digital mockups are also potentially less costly than physical 

mockups, which can cost tens of thousands of dollars.  
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However, no common methodology exists for creating digital mockups. Towards 

this end, we sought to develop a general approach for time-controllable digital mockup 

execution. Digital mockups can be implemented through a variety of methods and on a 

variety of different platforms, trading off performance, complexity, size, and accuracy. 

While a medical device software developer may run a digital mockup directly on the 

physical development platform for increased performance and/or accuracy, another 

approach is to run the digital mockup on top of virtualized platform like an in-circuit 

emulator. By varying the rate at which the digital mockup generates samples, the digital 

mockup can still run faster than or in real-time to interface with the medical device 

software under test. A virtualized environment can also provide built-in and unobtrusive 

debug capabilities, allowing the designer to stop, start, and step through the digital 

mockup to examine important system variables. The virtualized environment can exploit 

Figure 42: Digital mock-up platform: (a) The bypass method of integration taps directly into the digital information 
packets that indicate the data/control values to/from the device sensors/actuators, (b) the method matches hardware-in-

the-loop approaches used in industrial practice (figure courtesy of Boeing, 2009).   
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the digital mockup’s explicit notion of a simulated time step, allowing the designer to 

monitor the mockup using time-controllable debug. For example, a medical device 

software developer may wish to step through a wheezing lung that just coughed one time 

step at a time (physiological models are defined to compute the next system values in 

time based on a delta time parameter), observing subtle differences in pressure and 

volume in the digital lung that might not easily be observed when running in real-time. 

We describe a time-controllable SystemC-on-a-Chip framework that allows a 

medical device software developer to interface a medical device to a SystemC-based 

digital mockup, and start, stop, profile, and advance execution using explicit time-

granularized debug commands. This is contrasted to a more traditional debugging 

approach, where debugging is performed at the instruction granularity, and which does 

not include an explicit notion of time. A time-granularized approach is generally more 

useful for physiological digital mockups, and provides a more powerful abstraction for 

developing and testing medical device software. 

 

7.2 SystemC for Synchronized Physiological Models 

There are a number of approaches to capturing and implementing physiological systems 

models.  Physiological systems are usually first modeled using systems (hundreds or 

thousands) of partial and ordinary differential equations. The model can then be captured 

for PC execution using a particular programming language, typically an expressive 

mathematical language like MML, Matlab, or VisSim. 
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Figure 43:  Capturing physiological models in SystemC. (a) Portion of a mathematical model of the human lung. (b) 
Description of the model in SystemC. (c) Description using POSIX threads.  The POSIX threads approach requires 

implementing explicit lock-stepping mechanisms that detract from the model’s readability.   

Cbr       = Qbr / Vbr 
Fbr          = (Pair – Pbr) / Rbr 
dQbr/dt  = Fbr * (Cair + Cbr) + Falv * (Calv – Cbr) 

 

Class model : public sc_module { 
   sc_in_clk clock; 
 
   integrator Q_integ; 
 
   sc_signal<sc_uint<32> > Qbr, Qbr_t; 
   sc_signal<sc_uint<32> > Cbr, Fbr; 
 
   SC_CTOR { 
      Q_integ.clock(clock); 
      Q_integ.func(Qbr_t); 
      Q_integ.dt(dt); 
      Q_integ.out(Qbr); 
 
      SC_METHOD(cbr_func); 
      sensitive << clock; 
      SC_METHOD(fbr_func); 
      sensitive << clock; 
      SC_METHOD(qbr_t_func); 
      sensitive << clock; 
   } 
 
   void cbr_func( void ) { 
       Cbr = Qbr / Vbr; 
   } 
   void fbr_func( void ) { 
       Fbr = (Pair – Pbr) / Rbr; 
   } 
   void qbr_t_func( void ) { 
       Qbr_t = Fbr * (Cair + Cbr) + \ 
                     Falv * (Calv – Cbr); 
   } 
}; 

 

int cbr,fbr,qbr_t; 
sem_t  timestep_done,cbr_done;  
sem_t fbr_done,qbr_t_done; 
 
void * Cbr( void * arg ) { 
   while (1) { 
      sem_wait(&timestep_done); 
      cbr = Qbr / Vbr; 
      sem_post(&cbr_done); 
   } 
} 
 
void * Fbr( void * arg ) { 
   while(1) { 
      sem_wait(&timestep_done); 
      fbr = (Pair – Pbr) / Rbr; 
      sem_post(&fbr_done); 
   } 
} 
 
void * Qbr_t( void * arg ) { 
   while(1) { 
      sem_wait(&timestep_done); 
      sem_wait(&cbr_done); 
      sem_wait(&fbr_done); 
      qbr_t = fbr*(Cair + cbr) + 
Falv*(Calv – cbr); 
      sem_post(&qbr_t_done); 
   } 
} 
 
void * ClockTick( void * arg ) { 
   while(1){ 
      sem_wait(&qbr_t_done); 
      sem_post(&cbr_done); 
      sem_post(&fbr_done); 
      sem_post(&qbr_t_done); 
      sem_post(&timestep_done); 
   } 
} 
 
int main(){ 
   pthread_t pCbr; 
   pthread_t pFbr; 
   pthread_t pQbr_t; 
   … 
   pthread_create(&pCbr); 
   pthread_create(&pFbr); 
   pthread_create(&pQbr_t);   
   pthread_join(pCbr, NULL); 
   pthread_join(pFbr, NULL); 
   pthread_join(pQbr_t, NULL); 
 
   return 0; 
} 
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Another method to capturing physiological systems models is to use SystemC. 

SystemC is a set of libraries built on top of the C++ language that provides an event-

driven simulation kernel, allowing a designer to simulate a number of concurrently 

executing processes, and which supports precisely-timed communication based on 

simulated time. SystemC is a natural fit for capturing physiological systems models for a 

number of reasons.  The equations that represent most physiological systems are naturally 

expressed as a number of concurrently executing interconnected processes that execute in 

lockstep. Digital physiological mockups implemented in SystemC have the added 

advantage that freely available SystemC simulation environments exist that enable 

comprehensive PC testing. Further, the developer can run SystemC on a real development 

platform using an in-circuit emulation approach like SystemC-on-a-Chip [Sirowy], with 

the advantage that the SystemC-based digital mockup executes with real peripherals, and 

with real devices, like medical device platforms. 

While solutions can be implemented in other parallel programming paradigms 

like POSIX threads or Java threads that also operate with precise timing constraints, 

physiological models are more naturally represented in SystemC, where lock-stepped 

execution is an intrinsic part of the language. A SystemC description can require less 

code, is more readable, and is also more extendable. Figure 43(a) shows a portion of a 

human lung model captured with three interconnected equations. Figure 43(b) shows the 

SystemC description and Figure 43(c) shows a more traditional POSIX–based parallel 

programming description of the model. The POSIX threads approach requires describing 

explicit tightly-coupled, time lock-stepping mechanisms that make the description more 
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difficult to read, maintain, and extend. Additionally, there is no clear way to step through 

a POSIX implementation at the simulated time level without further introducing 

extraneous code into the model. Matlab can also model a number of interconnected 

equations using a mathematical approach, but like POSIX and Java descriptions, Matlab 

does not support explicit timing constructs, and debugging is still performed using 

standard instruction-granularity debug features. 

 

7.3 Related Work 

Pimentel and Tirat-Gefen [112] developed real-time digital mockups that interfaced to 

medical devices by connecting symmetric D/A (digital-to-analog) and A/D (analog-to-

digital) cards to each side.  Previous work by Sirowy [122] focused on modest 

modifications to the medical device hardware and software such that a digital mockup 

could be connected directly. Sirowy’s approach still allows the addition of D/A and A/D 

attachments, but with the added advantage of allowing a designer to completely stay in 

the digital domain, and to accommodate situations where D/A or A/D conversions are 

complex (e.g., in the case of gas generation or sensing).  Other researchers have 

developed real-time physiological models [20] with a focus on describing the necessary 

architectures to achieve real-time. 

Several research efforts have emphasized creating and cataloging detailed 

physiological models [79][107][135]. Those models are targeted for PC-based 

simulation, yet could be used as a basis for digital mockups. Further, many physiological 
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models are highly complex, often requiring hours or days to simulate a few seconds [96]. 

Our initial focus is on real-time digital mockups.   

There has been much work in the domain of synchronization mechanisms for 

distributed systems. Lamport [87] describes methods to order events in a distributed 

system. Kopetz [85] also specifies clock synchronization methods, but describes 

techniques used for a more general network topology.  In contrast, our system consists of 

only two directly connected components, and thus is a simpler synchronization problem 

because uncertainties in a general network need not be considered 

There have been some efforts that focus on making time an explicit first class 

entity when designing and programming systems. Lee [90] calls for the need to bring 

time to the forefront of programming languages and models, especially with the rise in 

cyber physical systems research.  Lee [89] presents a taxonomy detailing several timing 

properties that should be explicitly expressed in programming languages for timing 

oriented behaviors. Benini [14] develops methods for performing time granularity 

debugging by calculating time through knowledge of the system’s clock speed and the 

number of cycles between breakpoints 

 

7.4 Time-Controllable Digital Mockup Execution 

The SystemC-on-a-Chip framework can be augmented to give the developer 

unobtrusive time-granularized debug and test capabilities.  In contrast to the standard 

instruction granularity debugging approaches, the SystemC-on-a-Chip framework can 

start, stop, and step a digital mockup’s simulated time, advancing time forward as slow or 
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fast as the developer requires.  Figure 44 highlights the differences between instruction 

level and time granularity debugging. 

Time-controllable SystemC emulation possesses a number of advantages for 

digital mockup execution. First, the medical device software developer can control time 

by running simulations between the digital mockup and medical device faster than real-

time. Running faster than real-time might allow a developer to simulate a night’s worth 

of breathing in just a few hours, or make possible the ability to test several different 

control algorithms on the medical device in a timely manner. The ability to run faster 

than real-time is of course determined by the delta time step at which the digital mockup 

is executing and how powerful the underlying platform is, but for many examples, 

running faster than real-time is feasible. 

Another advantage is the debugger can step through the execution of the digital 

mockup at the level of time granularity the digital mockup computes. Stepping using an 

explicit notion of time might allow a medical device software developer to step through a 

simulated cough of a digital lung mockup, a heart murmur in a digital heart mockup, or 

other anomalies and subtleties that might not otherwise be seen, or easily observed, 

executing at faster speeds 
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7.5 Experiments 

We conducted several experiments to test the feasibility of capturing digital mockups 

using SystemC, interfacing those models using the SystemC-on-a-Chip framework to a 

medical device, and testing the ability to control time by configuring faster than real-time 

execution and incrementally stepping through time. We built a SystemC-on-a-Chip 

framework to run on a Xilinx Virtex5 FPGA platform. We wrote the SystemC-on-Chip 

framework in approximately 20,000 lines of C, C++, and VHDL.  The main emulation 

kernel was built on top of a Xilinx Microblaze processor, with custom bytecode 

accelerators [Sirowy] built on the native FPGA fabric for increased performance. We also 

Figure 44:  Time-Controllable Debugging. In contrast to traditional instruction granularity debugging, time granularity 
debugging allows a developer to monitor system variables by explicitly controlling simulated time.   
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built SystemC-on-a-Chip frameworks for a Xilinx Virtex4 Ml403 platform, and a Xilinx 

Spartan 3E platform. The Virtex4 implementation was built on top of a PowerPC-based 

system. All of the SystemC-on-a-Chip implementations could execute the same SystemC 

bytecode without recompiling for any particular platform. 

We described a number of physiological models in SystemC that we obtained 

from the NSR Physiome Project. Figure 45 shows a portion of the SystemC code used to 

capture a two-compartmental respiratory system, one bronchial compartment and one 

alveolar compartment.  The respiratory system model computes airway pressure, lung 

pressure, flow, and volume values for a healthy human lung at a simulated time step of 

approximately 4 milliseconds. The respiratory system was modeled using a series of four 

ordinary differential equations, and nine linear equations. We modeled the respiratory 

system using approximately 400 lines of behavioral SystemC. The SystemC description 

compiled to approximately 500 lines of SystemC bytecode, and compiled through the 

SystemC bytecode compiler in less than a second. 



123 

We executed the digital respiratory mockup on the Xilinx Virtex5 implementation 

of the SystemC-on-a-Chip development platform. At full speed, the SystemC-on-a-Chip 

platform could execute a full simulated time step in 1.6 milliseconds, or about 3X faster 

than real-time. We also modeled an alternate implementation of a lung that computes 

Figure 45:  SystemC Implementation of a two-compartment respiratory system digital mockup.  

#include “systemc.h” 
 
template<int bit = 32> 
class integrator : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<32> > dt; 
   sc_in<sc_uint<32> > funct; 
   sc_out<sc_uint<32> > out; 
 
    sc_signal<sc_uint<32> > reg; 
 
   integrator( sc_module_name n ) sc_module (n)  
{ 
      sc_method(process); 
      sensitive << clock; 
   } 
   void process(void) { 
      reg = funct.read() * dt.read() + reg; 
      out.write(reg); 
   } 
}; 
 
class model : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<32> > qalv, valv, qbr, vbr; 
   sc_out<sc_uint<32> > qalv_t, valv_t; 
   sc_out<sc_uint<32> > qbr_t,    vbr_t; 
 
   sc_signal<sc_uint<32> > pbr, palv, fbr; 
  sc_signal<sc_uint<32> > falv, cbr, calv; 
 
   model( sc_module_name n ) : sc_module(n)   { 
      SC_METHOD(pbr_func); 
      sensitive << clock; 
      //… 
      SC_METHOD(qalv_t_func); 
      sensitive << clock; 
   } 
 
   void pbr_func(void) { 
      int COM_BR = 0x100; 
      int VBR_0 = 0x9600; 
      pbr = vbr.read() - VBR_0 / COM_BR; 
   } 
 
   //… 
 
   void qalv_func(void) { 
      qalv_t.write(falv * (cbr + calv)); 
   } 
}; 

 

class top : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<4> > buttons; 
   sc_in<sc_uint<32> > memory_in; 
   sc_in<sc_uint<8> > uart_rx; 
   sc_out<sc_uint<8> > uart_tx; 
   sc_out<sc_uint<32> > fb_h; 
   sc_out<sc_uint<32> > fb_v; 
   sc_out<sc_uint<32> > fb_data; 
   sc_out<sc_uint<4> > leds; 
 
   sc_signal<sc_uint<32> > Qbr_t, Qalv_t; 
   sc_signal<sc_uint<32> > Vbr_t, Valv_t; 
   sc_signal<sc_uint<32> > Qbr, Qalv;   
sc_signal<sc_uint<32> > Vbr, Valv; 
   sc_signal<sc_uint<32> > dt; 
 
   model model_1; 
   integrator<32> integrator_Qalv; 
   integrator<32> integrator_Qbr; 
   integrator<32> integrator_Valv; 
   integrator<32> integrator_Vbr; 
 
   top( sc_module_name n ) : sc_module(n)   
   { 
      dt.write(0x1);    
 
      model_1->clock(clock); 
      model_1->qalv(Qalv); 
      model_1->qbr(Qbr); 
      model_1->valv(Valv); 
      model_1->vbr(Vbr); 
      model_1->qalv_t(Qalv_t); 
      model_1->qbr_t(Qbr_t); 
      model_1->valv_t(Valv_t); 
      model_1->vbr_t(Vbr_t); 
 
      integrator_Qalv->clock(clock); 
      integrator_Qalv->dt(dt); 
      integrator_Qalv->funct(Qalv_t); 
      integrator_Qalv->out(Qalv); 
 
      //… 
 
      integrator_Vbr->clock(clock); 
      integrator_Vbr->dt(dt); 
      integrator_Vbr->funct(Vbr_t); 
      integrator_Vbr->out(Vbr); 
   } 
};   
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concentration, lung mass, flow, bronchial pressure, and alveolar pressure. The system 

consisted of four equations, one of which was an ordinary differential equation. We 

modeled the system using 600 lines of structural SystemC. The SystemC bytecode 

compiler compiled the model to approximately 300 lines of SystemC bytecode. While the 

model computed fewer equations than the previous model, the SystemC-on-a-Chip 

framework took longer to compute one time step because the model was captured 

structurally with more interconnected processes. Figure 46 summarizes the models. 

Figure 47 illustrates one of our prototype setups for a ventilator and the 

respiratory system digital mockup.  The digital mockup communicates to the ventilator 

through four dedicated serial connections and one synchronization channel. The 

dedicated serial connections bypass the ventilator’s airway pressure, lung pressure, flow, 

and volume transducers. The synchronization channel is used to ensure that both models 

are sampling at the same frequency. Since the digital mockup can simulate time 3X faster 

than real-time when running on the virtualized platform, the medical device and digital 

mockup use the synchronization channel to agree on a rate at which both devices operate 

Figure 46:  SystemC Digital Mockup Implementation Summary.  Both respiration models were obtained from the 
NSR Physiome Project and manually converted to concurrently executing SystemC implementations.   
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[Sirowy]. The rate at which the devices operate is user-defined by a separate PC-based 

debug interface, and shown in Figure 47(a). 

We tested the usefulness of the time controllability of the test platform by 

developing a prototype PC-based debugging application. The debugger is able to stop, 

start, and advance time at the smallest simulated time rate the digital mockup can achieve 

(approx 4 milliseconds). Figure 47(b) shows that even with a simple debugging interface 

we can step through several steps of lung breathing, monitor pressures, volumes, and gas 

concentrations, and also make sure the ventilator software is performing correctly. The 

time-controllable debug commands given to the digital mockup propagate to the 

ventilator via the synchronization channel. 

 

 

Figure 47:  Medical device(ventilator) and digital mockup(lung) prototype setup. (a)The digital mockup can be time-
controlled using a simple PC-based debug interface. (b)The digital mockup and ventilator communicating digitally. 
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Chapter 8  

SystemC Emulation in the Classroom 

8.1 Overview 

Computing was originally dominated by desktop and hence data-oriented systems. 

However, embedded and hence time-oriented systems, which must measure input events 

or generate output events of specified time durations, or must execute at regular time 

intervals, are increasingly commonplace. Blinking a light on and off for 1 second 

Figure 48:  SystemC-on-a-Chip in the classroom. 
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represents a “Hello World” example of a time-oriented system. Time-oriented 

programming differs significantly from the more common data-oriented programming, 

and developing correct maintainable time-oriented programs is challenging.  

Similarly, many embedded systems possess spatial connectivity, wherein 

component A is connected to B, component B is connected in component C, etc, and 

requires a fundamentally different model and structured approaches for teaching 

correctly.  

We can address both the spatial and time-oriented requirements of many 

embedded systems using SystemC. We present a spatial and time-oriented approach to 

teaching embedded systems using SystemC. Our approach involves creating an easy-to-

use front end for the SystemC-on-a-Chip framework for the popular Xilinx Spartan 3E 

board (shown in Figure 48), a website with a number of available materials for the 

instructor wanting to use the SystemC-on-a-Chip in the classroom, including a course 

worth of lab assignments. 

8.2 Related Work 

Several research projects attempt to improve engineering education. Hodge [70] 

introduces the concept of a Virtual Circuit Laboratory, a virtual environment for a 

beginning electrical engineering course that mimics failure modes in order to aid students 

in developing solid debugging techniques. The environment not only provides a 

convenient test environment, but also allows an instructor to concentrate more on 

teaching.  Butler [22] developed a web-based microprocessor fundamental course, which 
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includes a Fundamental Computer that provides students in a first year engineering 

course a less threatening introduction to microprocessors and how to program. 

Other researchers have concentrated on developing or evaluating computing 

architectures for beginning students or non-engineers. Benjamin [16] describes the 

BlackFin architecture, a hybrid microcontroller and digital signal processor.  The 

architecture provides a rich instruction set based on MIPS with variable width data, and 

parallel processing support.  Ricks [115] evaluates the VME Architecture in the context of 

addressing the need for better embedded system education.  The Eblocks project [33] 

concentrated on developing sensor blocks that people without programming or 

electronics knowledge could connect to build basic customized sensor-based embedded 

systems. 

A number of real time operating systems have been introduced to provide a higher 

level of abstraction between the application software and embedded hardware, including 

the open source eCos [42], and VxVorks and RTLinux from WindRiver [152].  

There have also been several efforts to create virtual environments of 

microcontrollers suitable for running from the convenience of a standard desktop 

computer. The Virdes [144] virtual development system provides a virtual prototyping 

environment for anyone learning to program using the popular 8051/8052 

microcontroller. Virdes ships with several already built layouts to blink LEDs, work with 

analog to digital converters, and a virtual UART and terminal.  Images Scientific 

Instruments [75] developed a virtual system for prototyping PIC microcontrollers, while 
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other work has concentrated on developing virtual peripherals [60] for the AVR 

microcontroller. 

8.3 SystemC-on-a-Chip Software 

8.3.1 Using the SystemC Bytecode Compiler 

We considered a few approaches to distributing the SystemC bytecode compiler to 

students and teachers. The first approach was to make the SystemC bytecode compiler 

Figure 49:  Windows-based interface for programming SystemC-on-a-Chip. 
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source freely available, allowing students and teachers to install the compiler framework 

with no restrictions, and the freedom to make changes at their leisure. However, the 

SystemC bytecode compiler is currently difficult to install, Linux-based, and not 

desirable to setup.  We instead chose to wrap the SystemC bytecode compiler framework 

in a simple, but full functional Windows interface, shown in Figure 49. The Windows-

based environment showcases a full-featured editor, allowing students to begin coding 

immediately. The Windows-based approach is more familiar to most students, and allows 

more novice users to quickly begin. The Windows-based environment supports a simple 

compile interface, wherein a student simple clicks the big “Compile” button in the middle 

of the screen. 

In contrast to most integrated development environments wherein the backend 

compiler is located on the local machine for which compilation is taking place, we take a 

Figure 50:  Remote Compilation for SystemC-on-a-Chip. 
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remote compilation approach. Modeled after approaches taken by companies like 

Tensilica [136], remote compilation for SystemC-on-a-Chip has a number of advantages, 

including a simpler and smaller Windows-based front-end, and the ability to make 

transparent updates to the compiler backend.  Figure 50 shows the SystemC-on-a-Chip 

remote compilation framework. We can currently support dozens of concurrent users, 

allowing each to write and compile SystemC code as if the compiler was on the local 

machine. Such support enables classrooms of students to work concurrently. Such 

support is limited is though, and we are currently investigating approaches to reduce 

latency when multiple users begin overloading the compiler server.  

8.3.2 Downloading SystemC to Development Platform 

We take two approaches to downloading the SystemC bytecode to the development 

platform. In a previously explained approach, the user places the SystemC bytecode onto 

a USB thumb drive and inserts the thumb drive directly into the platform. The approach 

is simple, intuitive, and allows a student to migrate his code to different platforms for 

portability purposes. We offer an additional approach using the Windows-based 

environment. After successfully compiling a SystemC application, the student has the 

option of downloading the SystemC bytecode by accessing a “Download” menu option, 

or by pressing the “Download” button on the second tab. Assuming serial connectivity 

with the development platform, the Windows-based environment maintains the software 

(the emulation engine) and circuitry of the SystemC-on-a-Chip platform and will 

download the SystemC bytecode automatically.  The approaches are complementary, and 

give the user additional options for interfacing with their development platform. 
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8.4 Spatial and Time-Oriented Programming 

8.4.1 Course Plan 

We previously developed virtual microcontroller [123] technology for the purposes of 

teaching structured time-oriented programming to beginning students to complement 

traditional data-oriented programming paradigms without having to focus on the 

complexities and nuances of real microcontrollers. The SystemC-on-a-Chip teaching 

framework focuses on more advanced time-oriented programming while also introducing 

the concept of spatial programming to college students. Additionally, the SystemC-on-a-

Figure 51:  Time Oriented and Spatial Programming with SystemC. We have developed a complete set of labs and 
materials to complement a course in spatial and time-oriented programming.  

Example Title Purpose 

1 Input/Output with LEDs 
Beginning example on 
how to write SystemC to 
interface with peripherals 

2 Seatbelt Warning Light 
System 

Connecting Components. 
Spatial Programming 

3 Toggle Switch Introduction to Time-
Ordered Behavior 

4 Data Transmission and 
Encryption Systems 

Introduction to Time-
Interval Behavior 

5 Working with an LCD More advanced peripheral 
interfacing and time-
interval programming 
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Chip framework gives students access to a number of powerful peripherals often seen in 

commercial systems, including LCDs, UARTs, and a video screens. The SystemC-on-a-

Chip teaching approach is complementary to the virtual microcontroller approach, and 

could fit well as a more advanced course on embedded systems programming. 

8.4.2 Sample Labs 

Figure 51 shows a listing of several exercises intended we developed to teach 

college students about time-oriented and spatial programming using SystemC, and within 

the context of the SystemC-on-a-Chip platform. The listing is part of a complete set of 

materials available on http://systemc.cs.ucr.edu intended to give an instructor ample 

materials to serve as a basis for time-oriented and spatial programming. The examples 

follow a progression that teach students the basics of SystemC, spatial programming, 

time-ordered and time-interval programming, and then more advanced programming 

concepts. For each example, we introduce a new concept, and how that concept is 

implemented using SystemC. For the instructor, we provide our own source code 

solution. The source code solution might be used in the classroom showing the students 

the particular concept, or may be used to check student solutions in a lab setting. We also 

provide a series of additional exercises that further aid understanding in the particular 

concept just learned. The additional exercises can be presented to the students in 

numerous ways, including homework assignments, extra practice, or as supplemental 

laboratories.  
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Chapter 9  

Contributions 

9.1 Summary 

We have demonstrated that SystemC serves as a viable distribution format for portable 

FPGA binaries. Combined with a fast emulation framework that dynamically and 

transparently optimizes the SystemC application, such a distribution format can attain 

high performance and still remain highly portable . 

As FPGAs become more common in mainstream general-purpose computing 

platforms, distributing high-performance implementations of applications on FPGAs will 

become increasingly important. Even in the presence of C-based synthesis tools for 

FPGAs, designers continue to implement applications as circuits, due in large part to 

allow for capture of clever circuit-level implementation features leading to superior 

performance and efficiency. We demonstrated that while the distribution of sequential 

code (like C) for FPGA applications worked for 82% of the clever circuits we studied, 

many circuits required explicit parallel concepts, and of the 82% that we could capture as 

sequential code, 70% required spatially-oriented C code. Clearly the distribution format 
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of the FPGA application should include parallel programming constructs, along with the 

already established sequential constructs.   

We chose to use SystemC as a possible distribution format for FPGA 

applications. SystemC allows description of a digital system using traditional 

programming features as well as spatial connectivity features common in hardware 

description languages. We described an approach for in-system emulation of SystemC 

descriptions. The approach centers around a new SystemC bytecode format that executes 

on an emulation engine running on a microprocessor and/or FPGA on a development 

board.  Emulating SystemC allows a designer to test a circuit design using real 

peripherals while eliminating the need for eliminating the need for expensive, 

complicated, and often long-running synthesis tools at the cost of slower execution speed 

compared to a circuit. We described a full SystemC-on-a-chip framework that includes a 

SystemC bytecode compiler, the SystemC bytecode format, emulation engine, and 

emulation accelerators.  We demonstrated that a number of examples could be written 

once in SystemC, and then run unaltered on several prototype platforms from a USB 

flash drive. 

We observed that with the inclusion of SystemC bytecode accelerators that 

SystemC emulation could further benefit by adapting to a dynamically changing event 

queue. We defined the Online SystemC Emulation Acceleration problem and applied 

several online heuristics to improve emulation performance by 9x over emulating all of 

the SystemC on the SystemC emulation kernel, and 5x over statically preloading the 
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acceleration engines. Online heuristics could further speedup emulation by up to 20% 

with kernel bypass. 

While many SystemC-on-a-Chip implementations benefit from FPGA resources, 

which directly affect the use of SystemC bytecode accelerators and their dynamic 

management, others do not, and are penalized with slow performance. We introduce JIT 

compilation techniques that on average improve the performance of SystemC emulation 

by 10x compared to basic SystemC emulation on a Microblaze processor. The speedup 

was obtained via a JIT/architecture codesign process wherein the architecture was refined 

and JIT compilation modified to yield additional speedups. The net result is that our 

SystemC emulator with JIT compilation on a Microblaze processor runs nearly as fast as 

C code written for and compiled directly to the Microblaze processor. Such fast 

emulation can greatly broaden the usefulness of SystemC emulation. 

We demonstrated that the SystemC-on-a-Chip framework works well with 

developing digital mockups for medical device testing. Developing medical device 

software by interfacing with a digital mockup enables development without costly or 

dangerous physical mockups, and enables execution that is faster or slower than real-

time. Developing digital mockups in SystemC has the added advantages that the 

description closely models the high level mathematical and physical model, can be tested 

extensively with freely available SystemC support libraries, and can interface to real 

medical device software through the use of the SystemC-on-a-Chip framework. The 

SystemC-on-a-Chip framework enables time-controllable debug features, making 

possible the ability to step through a digital mockup’s execution through simulated time. 
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We tested the feasibility of such an approach by modifying the existing SystemC-on-a-

Chip framework to support time-controllable debug, and also tested multiple respiratory 

digital mockup examples. We currently are modifying a commercial ventilation system to 

interact with SystemC-based digital mockups. 

We developed and demonstrated a working framework to allow SystemC to be 

taught and used in the college classroom. Our framework includes a networked compiler, 

a simple and powerful Windows front end graphical interface, and a series of lessons to 

guide the beginning student from beginning SystemC constructs to more advanced 

embedded system design.  

9.2 Remaining Challenges 

We are currently working to improve the SystemC emulation tools in many 

respects, including developing new hardware-based emulation architectures, reducing the 

footprint of the emulation software, and developing frameworks for a number of different 

platforms. Possibly future improvements to the SystemC-on-a-Chip architecture include 

migrating the event queue kernel to hardware for improved performance, exacerbating 

the speedups seen by both JIT compilation and online SystemC acceleration. Another 

future improvement is profile a number of SystemC applications to identify various 

topologies of the SystemC bytecode accelerators that would improve SystemC emulation. 

We currently have only developed one kernel bypass mechanism, but many such bypass 

mechanisms might exist. Eventually, the entire SystemC-on-a-Chip framework might be 

an array of connected SystemC accelerators that require no overhead for maintaining 

event and signal queues.  Another future improvement to the emulation framework is to 
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integrate the JIT compilation framework with the online acceleration management 

problem, further increasing the performance of the emulation framework.  

Further improvements include supporting a larger set of the SystemC language 

(constructs like memories, queues, fifos, etc), as well as higher level programming 

paradigms like transaction level modeling (TLM). The SystemC-on-a-Chip framework 

should eventually be built for PC-based platforms that already support FPGA additions 

(like Intel Quick assist), increasing the utility of such a framework. 
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