
Achieving Time-Controllable Digital Mockup
Execution using SystemC
SCOTT SIROWY, BAILEY MILLER, AND FRANK VAHID*
University of California, Riverside
*also with the Center for Embedded Computer Systems, University of California,
Irvine

__

Medical device software is sometimes initially developed by using a PC simulation environment that executes
models of both the device and a physiological system, and then later by connecting the actual medical device to
a physical mockup of the physiological system. An alternative is to connect the medical device to a digital
mockup of the physiological system, such that the device software executes as if it is interacting with a
physiological system, but in fact all interaction is digital. Developing medical device software by interfacing
with a digital mockup enables development without costly or dangerous physical mockups, allows testing of
extreme conditions, and provides for execution that is faster or slower than real-time. We propose a SystemC-
based approach for digital mockup capture and execution, which gives the medical device software developer
the ability to start, stop, and step execution based on time intervals. Such an ability is in contrast with traditional
instruction based debugging approaches, and gives a more powerful abstraction when testing medical device
software. We detail our SystemC-based capture and execution approach, and provide data from experiments for
a ventilator device interacting with a human respiration digital mockup.

Categories and Subject Descriptors: B.5.2 [Hardware] – RTL, Optimization, Simulation; C.0 [Computer
Systems Organization] – HW/SW Interfaces; D.1.3 [Concurrent Programming] - Parallel
Programming;
General Terms: Design, Experimentation, Human Factors, Measurement, Performance
Additional Key Words and Phrases: Digital mockups, SystemC, Spatial Computing, Medical Devices, Software
Development, Emulation, Real-Time
__

1. INTRODUCTION

Medical device software is commonly developed using one of several approaches. One

approach involves modeling on a PC, shown in Figure 1(a). A designer develops models

for both a medical device, such as a pacemaker or ventilator, and for the physiological

system with which the device interacts, such as a heart or lung. Such a modeling

approach supports rapid device software changes, supports simulations that execute faster

(or slower) than real-time, and avoids potential safety issues that could arise when

interacting with an actual physical system.

A second approach, used after or instead of the modeling approach, runs the medical

This research was supported in part by the National Science Foundation under Grant CNS-0614957 and by the
Office of Naval Research under the Contract Number N00014-07-C-0311.
Authors' addresses: Scott Sirowy, Department of Computer Science The University of .California, Riverside,
CA, 92507; Bailey Miller, Department of Computer Science, The University of California, Riverside, CA,
92507; Frank Vahid, Department of Computer Science, The University of California, Riverside, CA 92507.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2009 ACM 1073-0516/01/0300-0034 $5.00

device software on the actual medical device, which is connected to a physical mockup of

the physiological system. Physical mockups range from simple structures, such as a

balloon representing a lung, to computerized mechanical parts that dynamically react

[Michigan Instruments], that can be set to mimic a range of conditions, and whose

internal sensors can be interfaced to a computer for analysis and debugging. One

disadvantage of interfacing to off-the-shelf physical mockups is the inability to adapt to

new features, especially features not easily mimicked via mechanical means. For

example, a future ventilator may sense human-generated nitric oxide concentrations

(recently discovered to be significant in respiratory issues [Shin]) and adapt the output

gas mix in response. However, no existing computerized mechanical test lung generates

nitric oxide, nor is it clear how to create one.

An alternative is to connect the actual medical device to a digital mockup of the

physiological system. A digital mockup is a behavioral model that emulates the physical

system. In such a case, the medical device software executes as if it were interacting with

a physiological system, but in fact all interaction is through a digital interface, as in

Figure 1: Approaches to integrating an embedded device with the physical environment during
design: (a) system model, (b) physical mockup, (c) digital mockup.

Modeling environment (e.g., Matlab, VisSim)

Lung
model

Ventilator
model

(a)

(b)

Physical lungs mockup

(c)

 Ventilator device

Digital lungs mockup

Lung
model

Ventilator device

Physical environment model Device

Analog
connections

Digital
connections

Figure 1(c). We consider a digital mockup platform with a sensor/actuator bypass method

of integration [Sirowy], as shown in Figure 2(a). Under this scheme, the digital mockup

taps directly into the information packets that carry the control and data bitsto and from

the device’s sensors and actuators. The digital mockup includes models of the

physiological system, of the physical connections between the device and physiological

system, and of the sensors and actuators. A supervisory system coordinates execution of

the digital mockup and medical device. The sensor/actuator bypass method is in harmony

with methods used in industrial “hardware-in-the-loop” practice today, shown in Figure

2(b). Digital mockups combine the flexibility and faster-than-real-time execution benefits

of PC simulation models with the advantages of developing software on an actual

medical device. Digital mockups are also potentially less costly than physical mockups,

which can cost tens of thousands of dollars.

However, no common methodology exists for creating digital mockups. Towards this

end, we sought to develop a general approach for time-controllable digital mockup

execution. Digital mockups can be implemented through a variety of methods and on a

variety of different platforms, trading off performance, complexity, size, and accuracy.

While a medical device software developer may run a digital mockup directly on the

physical development platform for increased performance and/or accuracy, another

approach is to run the digital mockup on top of virtualized platform like an in-circuit

emulator. By varying the rate at which the digital mockup generates samples, the digital

mockup can still run faster than or in real-time to interface with the medical device

software under test. A virtualized environment can also provide built-in and unobtrusive

debug capabilities, allowing the designer to stop, start, and step through the digital

Figure 2: Digital mock-up platform: (a) The bypass method of integration taps directly into the digital
information packets that indicate the data/control values to/from the device sensors/actuators, (b) the method

matches hardware-in-the-loop approaches used in industrial practice (figure courtesy of Boeing, 2009).

Actuator

Digital mock-
up platform

Embedded device
– pacemaker,

engine control unit,
etc.

Sensor Input/output
digital leads

USB
port

Physical
phenomena

Processors/FPGAs
inside

(a) (b)

Actual physical
satellite operating

in a lab

mockup to examine important system variables. The virtualized environment can exploit

the digital mockup’s explicit notion of a simulated time step, allowing the designer to

monitor the mockup using time-controllable debug. For example, a medical device

software developer may wish to step through a wheezing lung that just coughed one time

step at a time (physiological models are defined to compute the next system values in

time based on a delta time parameter), observing subtle differences in pressure and

volume in the digital lung that might not easily be observed when running in real-time.

We describe a time-controllable SystemC-on-a-Chip framework that allows a medical

device software developer to interface a medical device to a SystemC-based digital

mockup, and start, stop, profile, and advance execution using explicit time-granularized

debug commands. This is contrasted to a more traditional debugging approach, where

debugging is performed at the instruction granularity, and which does not include an

explicit notion of time. A time-granularized approach is generally more useful for

physiological digital mockups, and provides a more powerful abstraction for developing

and testing medical device software.

2. SYSTEMC FOR SYNCHRONIZED PHYSIOLOGICAL MODELS

There are a number of approaches to capturing and implementing physiological

systems models. Physiological systems are usually first modeled using systems

(hundreds or thousands) of partial and ordinary differential equations. The model can

then be captured for PC execution using a particular programming language, typically an

expressive mathematical language like MML, Matlab, or VisSim.

Another method to capturing physiological systems models is to use SystemC.

SystemC is a set of libraries built on top of the C++ language that provides an event-

driven simulation kernel, allowing a designer to simulate a number of concurrently

executing processes, and which supports precisely-timed communication based on

simulated time. SystemC is a natural fit for capturing physiological systems models for a

number of reasons. The equations that represent most physiological systems are naturally

expressed as a number of concurrently executing interconnected processes that execute in

lockstep. Digital physiological mockups implemented in SystemC have the added

advantage that freely available SystemC simulation environments exist that enable

comprehensive PC testing. Further, the developer can run SystemC on a real development

platform using an in-circuit emulation approach like SystemC-on-a-Chip [Sirowy], with

the advantage that the SystemC-based digital mockup executes with real peripherals, and

with real devices, like medical device platforms

Figure 3: Capturing physiological models in SystemC. (a) Portion of a mathematical model of the
human lung. (b) Description of the model in SystemC. (c) Description using POSIX threads. The

POSIX threads approach requires implementing explicit lock-stepping mechanisms that detract from
the model’s readability.

Cbr = Qbr / Vbr
Fbr = (Pair – Pbr) / Rbr
dQbr/dt = Fbr * (Cair + Cbr) + Falv * (Calv – Cbr)

Class model : public sc_module {
 sc_in_clk clock;

 integrator Q_integ;

 sc_signal<sc_uint<32> > Qbr, Qbr_t;
 sc_signal<sc_uint<32> > Cbr, Fbr;

 SC_CTOR {
 Q_integ.clock(clock);
 Q_integ.func(Qbr_t);
 Q_integ.dt(dt);
 Q_integ.out(Qbr);

 SC_METHOD(cbr_func);
 sensitive << clock;
 SC_METHOD(fbr_func);
 sensitive << clock;
 SC_METHOD(qbr_t_func);
 sensitive << clock;
 }

 void cbr_func(void) {
 Cbr = Qbr / Vbr;
 }
 void fbr_func(void) {
 Fbr = (Pair – Pbr) / Rbr;
 }
 void qbr_t_func(void) {
 Qbr_t = Fbr * (Cair + Cbr) + \
 Falv * (Calv – Cbr);
 }
};

int cbr,fbr,qbr_t;
sem_t timestep_done,cbr_done;
sem_t fbr_done,qbr_t_done;

void * Cbr(void * arg) {
 while (1) {
 sem_wait(×tep_done);
 cbr = Qbr / Vbr;
 sem_post(&cbr_done);
 }
}

void * Fbr(void * arg) {
 while(1) {
 sem_wait(×tep_done);
 fbr = (Pair – Pbr) / Rbr;
 sem_post(&fbr_done);
 }
}

void * Qbr_t(void * arg) {
 while(1) {
 sem_wait(×tep_done);
 sem_wait(&cbr_done);
 sem_wait(&fbr_done);
 qbr_t = fbr*(Cair + cbr) +
Falv*(Calv – cbr);
 sem_post(&qbr_t_done);
 }
}

void * ClockTick(void * arg) {
 while(1){
 sem_wait(&qbr_t_done);
 sem_post(&cbr_done);
 sem_post(&fbr_done);
 sem_post(&qbr_t_done);
 sem_post(×tep_done);
 }
}

int main(){
 pthread_t pCbr;
 pthread_t pFbr;
 pthread_t pQbr_t;
 …
 pthread_create(&pCbr);
 pthread_create(&pFbr);
 pthread_create(&pQbr_t);
 pthread_join(pCbr, NULL);
 pthread_join(pFbr, NULL);
 pthread_join(pQbr_t, NULL);

 return 0;
}

(a)

(b) (c)

SystemC implementation
much closer to the
mathematical model

Extraneous code to
implement synchronous
locksteps detract from
actual model

While solutions can be implemented in other parallel programming paradigms like

POSIX threads or Java threads that also operate with precise timing constraints,

physiological models are more naturally represented in SystemC, where lock-stepped

execution is an intrinsic part of the language. A SystemC description can require less

code, is more readable, and is also more extendable. Figure 3(a) shows a portion of a

human lung model captured with three interconnected equations. Figure 3(b) shows the

SystemC description and Figure 3(c) shows a more traditional POSIX–based parallel

programming description of the model. The POSIX threads approach requires describing

explicit tightly-coupled, time lock-stepping mechanisms that make the description more

difficult to read, maintain, and extend. Additionally, there is no clear way to step through

a POSIX implementation at the simulated time level without further introducing

extraneous code into the model. Matlab can also model a number of interconnected

equations using a mathematical approach, but like POSIX and Java descriptions, Matlab

does not support explicit timing constructs, and debugging is still performed using

standard instruction-granularity debug features.

3. RELATED WORK

[Pimentel and Tirat-Gefen] developed real-time digital mockups that interfaced to

medical devices by connecting symmetric D/A (digital-to-analog) and A/D (analog-to-

digital) cards to each side. Previous work by [Sirowy] focused on modest modifications

to the medical device hardware and software such that a digital mockup could be

connected directly. Sirowy’s approach still allows the addition of D/A and A/D

attachments, but with the added advantage of allowing a designer to completely stay in

the digital domain, and to accommodate situations where D/A or A/D conversions are

complex (e.g., in the case of gas generation or sensing). Other researchers have

developed real-time physiological models [Botros], with a focus on describing the

necessary architectures to achieve real-time.

Several research efforts have emphasized creating and cataloging detailed

physiological models [IUPS, NSR Physiome, Tawhai]. Those models are targeted for PC-

based simulation, yet could be used as a basis for digital mockups. Further, many

physiological models are highly complex, often requiring hours or days to simulate a few

seconds [Medgadget]. Our initial focus is on real-time digital mockups.

There has been much work in the domain of synchronization mechanisms for

distributed systems. [Lamport] describes methods to order events in a distributed system.

[Kopetz] also specifies clock synchronization methods, but describes techniques used for

a more general network topology. In contrast, our system consists of only two directly

connected components, and thus is a simpler synchronization problem because

uncertainties in a general network need not be considered.

There have been some efforts that focus on making time an explicit first class entity

when designing and programming systems. [Lee] calls for the need to bring time to the

forefront of programming languages and models, especially with the rise in cyber

physical systems research. [Lee] presents a taxonomy detailing several timing properties

that should be explicitly expressed in programming languages for timing oriented

behaviors. [Benini] develops methods for performing time granularity debugging by

calculating time through knowledge of the system’s clock speed and the number of cycles

between breakpoints.

Much research has involved virtualization [Levis, Smith], with several commercial

products developed in response to the need for portable virtual machines. VMware

[Vmware] and the open source product Xen [Xen] concentrate on developing virtual

machines that allow the end-user to run multiple operating systems concurrently. The

Java Virtual Machine [Stark] allows the programmer to write operating system

independent code, and tools like DOS Box and console emulators allow the user to run

legacy applications in modern operating systems. Fornaciari extends virtualization to

FPGA platforms, giving the application designer a virtual view of an FPGA that is then

physically mapped via operating system functionality. Some work has focused on

accelerating Java bytecode through the design of custom bytecode accelerators [Grulan,

Parnis]. Virtualization has also been used to abstract complex microcontroller details

from the beginning embedded systems student [Sirowy].

There has also been some research in the field of hardware emulation for verification

and testing, including the BEE reconfigurable platform [Chang], and network-on-chip

emulation platforms [Genko]. [Nakamura] describes a hardware/software verification

platform that uses shared register communication between a processor simulator and

FPGA emulator. [Benini] describes virtual in-circuit emulation of SystemC circuits for

co-verification and timing accurate prototyping. [Rissa] evaluates the emulation speeds

of several SystemC models compared to standard HDL models. Our work emphasizes an

emulation framework with an explicit notion of time for time-controllable debug.

4. SYSTEMC-ON-A-CHIP FRAMEWORK

The SystemC-on-a-Chip framework, developed by [Sirowy], enables a

designer/programmer to capture applications using SystemC, and immediately run them

Figure 4: SystemC-on-a-Chip framework. The SystemC-on-a-Chip framework allows a designer to
write a SystemC application (a), compile that SystemC through the SystemC bytecode compiler to

SystemC bytecode (b), and run that SystemC application immediately on any platform that supports
the SystemC emulation engine (c). (d)

class EDGE_DETECTOR : public
sc_module {
//signal declarations
…
EDGE_DETECTOR() {
 SC_method(mainComp);
 sensitive << dataReady;

 SC_method(getPixel);
 sensitive << clock.pos();

void getPixel(){
 …
 dataReady.write(1);
}

void mainComp(){
 int i, j;
 for(i = 0; i < 3; i++){
 for(j = 0; j < 3; j++){

…
process(clock)
READ $1 dataReady
BGT $1 $0 Start
J Done
Start: ADDI $3 $0 0 -- GX[] -> 0
ADDI $4 $0 9 -- GY[] -> 9
ADDI $6 $0 18 -- bits[] -> 18
ADDI $1 $0 -1 -- GX[0] = -1
SW $1 0($3)
ADDI $1 $0 0 -- GX[1] = 0
SW $1 1($3)
ADDI $1 $0 1 -- GX[2] = 1
SW $1 2($3)
ADDI $1 $0 -2 -- GX[3] = -2
SW $1 3($3)

Development Platform

SystemC Emulation Engine

The SystemC Emulation
Engine can be
implemented for any
development platform that
can support a basic
interface

USB Download
Interface

SystemC
Bytecode
Compiler

(a) (b)

(c)

(d)

Clock

Reset

Button
s
uart rx

Input
Memory
Data

LEDs

uart
tx
Input Mem Addr

Output Mem Addr

Output Mem Data

Input Mem Stream

SystemC Circuit
Interface

Kernel

Mem1

UART

Mem2
Accel.

LEDs

on any development platform which supports the SystemC emulation engine, without

the need for costly synthesis and mapping tool suites. The SystemC-on-a-Chip

framework follows the “write once, run anywhere” paradigm made popular by language

frameworks like Java and C#.

Figure 4 highlights the SystemC-on-a-Chip framework. A designer first writes

SystemC code, a combination of traditional programming features and spatial

programming constructs, which captures the desired functionality (shown in Figure 4(a)).

The designer’s SystemC code runs through a SystemC bytecode compiler. The SystemC

bytecode compiler parses the source SystemC code and outputs SystemC bytecode,

shown in Figure 4(b). Akin to Java bytecode, SystemC bytecode is an intermediate form

of the original SystemC code. SystemC bytecode is a combination of MIPS-like assembly

level language instructions and special SystemC instructions, which retains all spatial and

timing information from the original SystemC application.

SystemC bytecode is supported by the SystemC emulation engine, shown in Figure

4(c). The SystemC emulation engine can run on any development platform that supports

a basic interface of a number of different peripherals, memories, and internal

components. The SystemC emulation engine’s core is a SystemC emulation kernel. The

SystemC emulation kernel consists of a lean event-driven kernel, a virtual machine to

execute the SystemC bytecode instructions, and hooks and access to the development

platform’s peripheral set. The lean event kernel continually processes a series of ready-

to-run events. An event is placed on a queue when a signal value is updated and that

signal is on the sensitivity list of a process. Each time step might consist of multiple delta

time steps, in which a process may execute multiple times during a time step. After each

delta step, the event kernel updates the signal values, and places any new sensitive

processes onto the event queue. The event-driven kernel calls a bytecode virtual machine

to execute each event in the event queue. The bytecode virtual machine supports the

SystemC bytecode instruction set. Each process is allocated an instruction memory,

register file, and local data memory. The virtual machine also contains proper hooks to

communicate with the standard peripheral and I/O set. The emulation engine supports

platform I/O and peripheral access. The set of peripherals includes buttons, LEDs,

UART, and input and output memories. The basic emulation engine supports SystemC

descriptions that implement the interface shown in Figure 4(d). The SystemC application

writer does not have to follow the standard interface, but the standard interface provides a

convenient mapping between description’s signals and the available peripherals. More

advanced platforms might choose to support a greater range of input and output

peripherals. For instance, a SystemC-on-a-Chip framework specialized for digital

mockup execution might support a large number of one-way serial connections for easy

interfacing to existing medical devices.

Additionally, the SystemC emulation engine optionally supports a portable USB

download interface, allowing a designer to download a SystemC application (the

bytecode version) to a SystemC emulation engine by simply inserting a USB stick into

the platform. The SystemC emulation engine is responsible for running the SystemC

bytecode, preserving the correct spatial and timing information.

5. TIME-CONTROLLABLE DIGITAL MOCKUP EXECUTION

The SystemC-on-a-Chip framework can be augmented to give the developer unobtrusive

time-granularized debug and test capabilities. In contrast to the standard instruction

granularity debugging approaches, the SystemC-on-a-Chip framework can start, stop,

and step a digital mockup’s simulated time, advancing time forward as slow or fast as the

developer requires. Figure 5 highlights the differences between instruction level and time

granularity debugging.

Figure 5: Time-Controllable Debugging. In contrast to traditional instruction granularity
debugging, time granularity debugging allows a developer to monitor system variables by explicitly

controlling simulated time.

Traditional Instruction
Granularity Debugging

BNE $1 $2 5
ADDI $4 $0 83
ADDI $1 $0 1
J 44
ADDI $2 $0 1
BNE $1 $2 5
ADDI $4 $0 99
ADDI $1 $0 2
J 44
ADDI $2 $0 2
BNE $1 $2 5
ADDI $4 $0 111

Set Break
Step
Step
Step

Set Break

Start

No explicit concept of time,
and not immediately useful
for digital mockup execution

Time Granularity Debugging

Time

Step Set
Break

Step Step

Lung
Pressure

Lung
Volume

Lung
Flow

…

Explicit concept of time, and
useful for discovering subtle
changes and relationships in
digital mockup system variables

vs.

2ms 4ms 6ms 8ms

Time-controllable SystemC emulation possesses a number of advantages for digital

mockup execution. First, the medical device software developer can control time by

running simulations between the digital mockup and medical device faster than real-time.

Running faster than real-time might allow a developer to simulate a night’s worth of

breathing in just a few hours, or make possible the ability to test several different control

algorithms on the medical device in a timely manner. The ability to run faster than real-

time is of course determined by the delta time step at which the digital mockup is

executing and how powerful the underlying platform is, but for many examples, running

faster than real-time is feasible.

Another advantage is the debugger can step through the execution of the digital

mockup at the level of time granularity the digital mockup computes. Stepping using an

explicit notion of time might allow a medical device software developer to step through a

simulated cough of a digital lung mockup, a heart murmur in a digital heart mockup, or

other anomalies and subtleties that might not otherwise be seen, or easily observed,

executing at faster speeds.

6. EXPERIMENTS

We conducted several experiments to test the feasibility of capturing digital mockups

using SystemC, interfacing those models using the SystemC-on-a-Chip framework to a

medical device, and testing the ability to control time by configuring faster than real-time

execution and incrementally stepping through time. We built a SystemC-on-a-Chip

framework to run on a Xilinx Virtex5 FPGA platform. We wrote the SystemC-on-Chip

framework in approximately 20,000 lines of C, C++, and VHDL. The main emulation

kernel was built on top of a Xilinx Microblaze processor, with custom bytecode

accelerators [Sirowy] built on the native FPGA fabric for increased performance. We also

built SystemC-on-a-Chip frameworks for a Xilinx Virtex4 Ml403 platform, and a Xilinx

Spartan 3E platform. The Virtex4 implementation was built on top of a PowerPC-based

system. All of the SystemC-on-a-Chip implementations could execute the same SystemC

bytecode without recompiling for any particular platform.

We described a number of physiological models in SystemC that we obtained from

the NSR Physiome Project. Figure 6 shows a portion of the SystemC code used to capture

a two-compartmental respiratory system, one bronchial compartment and one alveolar

compartment. The respiratory system model computes airway pressure, lung pressure,

flow, and volume values for a healthy human lung at a simulated time step of

approximately 4 milliseconds. The respiratory system was modeled using a series of four

ordinary differential equations, and nine linear equations. We modeled the respiratory

system using approximately 400 lines of behavioral SystemC. The SystemC description

compiled to approximately 500 lines of SystemC bytecode, and compiled through the

SystemC bytecode compiler in less than a second.

Figure 6: SystemC Implementation of a two-compartment respiratory system digital mockup.

#include “systemc.h”

template<int bit = 32>
class integrator : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<32> > dt;
 sc_in<sc_uint<32> > funct;
 sc_out<sc_uint<32> > out;

 sc_signal<sc_uint<32> > reg;

 integrator(sc_module_name n) sc_module (n)
{
 sc_method(process);
 sensitive << clock;
 }
 void process(void) {
 reg = funct.read() * dt.read() + reg;
 out.write(reg);
 }
};

class model : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<32> > qalv, valv, qbr, vbr;
 sc_out<sc_uint<32> > qalv_t, valv_t;
 sc_out<sc_uint<32> > qbr_t, vbr_t;

 sc_signal<sc_uint<32> > pbr, palv, fbr;
 sc_signal<sc_uint<32> > falv, cbr, calv;

 model(sc_module_name n) : sc_module(n) {
 SC_METHOD(pbr_func);
 sensitive << clock;
 //…
 SC_METHOD(qalv_t_func);
 sensitive << clock;
 }

 void pbr_func(void) {
 int COM_BR = 0x100;
 int VBR_0 = 0x9600;
 pbr = vbr.read() - VBR_0 / COM_BR;
 }

 //…

 void qalv_func(void) {
 qalv_t.write(falv * (cbr + calv));
 }
};

class top : public sc_module {
 sc_in_clk clock;
 sc_in<sc_uint<4> > buttons;
 sc_in<sc_uint<32> > memory_in;
 sc_in<sc_uint<8> > uart_rx;
 sc_out<sc_uint<8> > uart_tx;
 sc_out<sc_uint<32> > fb_h;
 sc_out<sc_uint<32> > fb_v;
 sc_out<sc_uint<32> > fb_data;
 sc_out<sc_uint<4> > leds;

 sc_signal<sc_uint<32> > Qbr_t, Qalv_t;
 sc_signal<sc_uint<32> > Vbr_t, Valv_t;
 sc_signal<sc_uint<32> > Qbr, Qalv;
sc_signal<sc_uint<32> > Vbr, Valv;
 sc_signal<sc_uint<32> > dt;

 model model_1;
 integrator<32> integrator_Qalv;
 integrator<32> integrator_Qbr;
 integrator<32> integrator_Valv;
 integrator<32> integrator_Vbr;

 top(sc_module_name n) : sc_module(n)
 {
 dt.write(0x1);

 model_1->clock(clock);
 model_1->qalv(Qalv);
 model_1->qbr(Qbr);
 model_1->valv(Valv);
 model_1->vbr(Vbr);
 model_1->qalv_t(Qalv_t);
 model_1->qbr_t(Qbr_t);
 model_1->valv_t(Valv_t);
 model_1->vbr_t(Vbr_t);

 integrator_Qalv->clock(clock);
 integrator_Qalv->dt(dt);
 integrator_Qalv->funct(Qalv_t);
 integrator_Qalv->out(Qalv);

 //…

 integrator_Vbr->clock(clock);
 integrator_Vbr->dt(dt);
 integrator_Vbr->funct(Vbr_t);
 integrator_Vbr->out(Vbr);
 }
};

 We executed the digital respiratory mockup on the Xilinx Virtex5 implementation of

the SystemC-on-a-Chip development platform. At full speed, the SystemC-on-a-Chip

platform could execute a full simulated time step in 1.6 milliseconds, or about 3X faster

than real-time. We also modeled an alternate implementation of a lung that computes

concentration, lung mass, flow, bronchial pressure, and alveolar pressure. The system

consisted of four equations, one of which was an ordinary differential equation. We

modeled the system using 600 lines of structural SystemC. The SystemC bytecode

compiler compiled the model to approximately 300 lines of SystemC bytecode. While the

model computed fewer equations than the previous model, the SystemC-on-a-Chip

framework took longer to compute one time step because the model was captured

structurally with more interconnected processes. Figure 7 summarizes the models.

Figure 8 illustrates one of our prototype setups for a ventilator and the respiratory

system digital mockup. The digital mockup communicates to the ventilator through four

dedicated serial connections and one synchronization channel. The dedicated serial

connections bypass the ventilator’s airway pressure, lung pressure, flow, and volume

transducers. The synchronization channel is used to ensure that both models are sampling

at the same frequency. Since the digital mockup can simulate time 3X faster than real-

time when running on the virtualized platform, the medical device and digital mockup

use the synchronization channel to agree on a rate at which both devices operate

[Sirowy]. The rate at which the devices operate is user-defined by a separate PC-based

debug interface, and shown in Figure 8(a).

We tested the usefulness of the time controllability of the test platform by developing

a prototype PC-based debugging application. The debugger is able to stop, start, and

advance time at the smallest simulated time rate the digital mockup can achieve (approx.

Figure 7: SystemC Digital Mockup Implementation Summary. Both respiration models were
obtained from the NSR Physiome Project and manually converted to concurrently executing

SystemC implementations.

Digital Mockup # of Eqns. # of ODEs SystemC LOC Simulate Dt Simulated Freq

 Alveolar
Bronchial Lung
w/ Gas Exchange

 First Order Non-
Linear Lung

 13 4 430 2-8 s

 4

~800 Hz

1 570 2-8 s ~600 Hz

(Behavioral)

(Structural)

4 milliseconds). Figure 8(b) shows that even with a simple debugging interface we can

step through several steps of lung breathing, monitor pressures, volumes, and gas

concentrations, and also make sure the ventilator software is performing correctly. The

time-controllable debug commands given to the digital mockup propagate to the

ventilator via the synchronization channel.

7 CONCLUSIONS

Developing medical device software by interfacing with a digital mockup enables

development without costly or dangerous physical mockups, and enables execution that is

faster or slower than real-time. Developing digital mockups in SystemC has the added

advantages that the description closely models the high level mathematical and physical

model, can be tested extensively with freely available SystemC support libraries, and can

interface to real medical device software through the use of the SystemC-on-a-Chip

framework. The SystemC-on-a-Chip framework enables time-controllable debug

features, making possible the ability to step through a digital mockup’s execution through

simulated time. We tested the feasibility of such an approach by modifying the existing

SystemC-on-a-Chip framework to support time-controllable debug, and also tested

multiple respiratory digital mockup examples. We currently are modifying a commercial

ventilation system to interact with SystemC-based digital mockups.

Figure 8: Medical device(ventilator) and digital mockup(lung) prototype setup. (a)The digital
mockup can be time-controlled using a simple PC-based debug interface. (b)The digital mockup and

ventilator communicating digitally.

Digital Mockup

Ventilator

(a)
(b)

Digital Bypass
Connections

REFERENCES

BENINI, L., BERTOZZI, D., BRUNI, D., DRAGO, N., FUMMI , F., AND PONCINO, M. 2003.
SystemC Cosimulation and Emulation of Multiprocessor SoC Designs. /Computer/ 36, 4
(Apr. 2003), 53-59.

BENINI, L., BRUNI, D., DRAGO, N., FUMMI , F., AND PONCINO, M. "Virtual in-circuit
emulation for timing accurate system prototyping," in Proc. IEEE Int. Conf. ASIC/- SoC,
2002

BOTROS, N., AKAABOUNE, M., ALGHAZO, J., AND ALHREISH, M. 2000. Hardware
Realization of Biological Mechanisms Using VHDL and FPGAs

CHANG, C., KUUSILINNA, K., RICHARDS, B., AND BRODERSEN, R. W. 2003.
Implementation of BEE: a real-time large-scale hardware emulation engine. In
Proceedings of the 2003 ACM/SIGDA Eleventh international Symposium on Field
Programmable Gate Arrays (Monterey, California, USA, February 23 - 25, 2003). FPGA
'03. ACM, New York, NY, 91-99

FORNACIARI, W. AND PIURI, V. Virtual FPGAs: Some Steps Behind the Physical Barriers.
In Parallel and Distributed Processing (IPPS/SPDP'98 Workshop Proceedings), LNCS.
1998

GENKO, N., ATIENZA, D., M ICHELI, G. D., MENDIAS, J. M., HERMIDA, R., AND CATTHOOR,
F. 2005. A Complete Network-On-Chip Emulation Framework. In Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 1 (March 07 - 11, 2005).
Design, Automation, and Test in Europe. IEEE Computer Society, Washington, DC, 246-
251

GRUIAN, F. AND WESTMIJZE, M. 2007. BlueJEP: A flexible and high-performance Java
embedded processor. In Proceedings of the 5th international Workshop on Java
Technologies For Real-Time and Embedded Systems (Vienna, Austria, September 26 -
28, 2007). JTRES '07, vol. 231. ACM, New York, NY, 222-229

IUPS PHYSIOME PROJECT. http://www.physiome.org.nz/

KOPETZ, H. AND OCHSENREITER, W. 1987. Clock synchronization in distributed real-time
systems. IEEE Trans. Comput. 36, 8 (Aug. 1987), 933-940

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (Jul. 1978), 558-56

LEE, E. Computing Needs Time. Communications of the ACM. May 2009. Vol 52.
Number 5.

LEE, I. DAVIDSON, S., AND WOLFE, V. Motivating Time as a First-Class Entity. Technical
Report MS-CIS-87-54. Department of Computer and Information Science. University of
Pennsylvanis, Philadelphia, PA. Aug 1987.

LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95

MEDGADGET INTERNET JOURNAL. 2008. Supercomputer Creates Most Advanced Heart
Model.
http://medgadget.com/archives/2008/01/worlds_biggest_heart_model_simulated_1.html

M ICHIGAN INSTRUMENTS. Training and Test Lung (TTL) and PneuView software,
http://www.michiganinstruments.com/resp-ttl.htm, 2009

NAKAMURA , Y., HOSOKAWA, K., KURODA, I., YOSHIKAWA, K., AND YOSHIMURA, T.
2004. A fast hardware/software co-verification method for system-on-a-chip by using a
C/C++ simulator and FPGA emulator with shared register communication. In
Proceedings of the 41st Annual Conference on Design Automation (San Diego, CA,
USA, June 07 - 11, 2004). DAC '04

NSR PHYSIOME PROJECT. http://nsr.bioeng.washington.edu

PARNIS, J. AND LEE, G. 2004. Exploiting FPGA concurrency to enhance JVM
performance. In Proceedings of the 27th Australasian Conference on Computer Science -
Volume 26 (Dunedin, New Zealand). Estivill-Castro, Ed. ACSC, vol. 56. Australian
Computer Society, Darlinghurst, Australia, 223-232

PIMENTEL, J. AND TIRAT-GEFEN, Y. 2006. Hardware Acceleration for Real-time
Simulation of Physiological Systems. EMBS. pp 218-223

PIMENTEL, J. AND TIRAT-GEFEN, Y. 2006. Real-Time Simulation of Physiological
Systems. Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference. pg.
159-160

RISSA, T., DONLIN, A., AND LUK, W. 2005. Evaluation of SystemC Modelling of
Reconfigurable Embedded Systems. In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 3 (March 07 - 11, 2005). Design, Automation,
and Test in Europe. IEEE Computer Society, Washington, DC, 253-258

SHIN, H. AND GEORGE, S. Impact of Axial Diffusion on Nitric Oxide Exchange in the
Lungs. Journal of Applied Physiology. 2002

SIROWY, S., GIVARGIS, T. AND VAHID , F. Digitally-Bypassed Transducers: Interfacing
Digital Mockups to Real-Time Medical Equipment. IEEE Engineering and Biology
Society (EMBS). 2009. Minneapolis.

SIROWY, S. M ILLER, B., AND VAHID . F. SystemC-on-a-Chip. 2009. International
Conference on Codesign and Synthesis (CODES). Grenoble, France.

SIROWY, S. SHELDON, D., GIVARGIS, T. AND VAHID . F. Virtual Microcontrollers. ACM
Sigbed Review. 2008

SMITH , J. AND NAIR, R. V IRTUAL MACHINES: Versatile Platforms for Systems and
Processes. Morgan-Kaufman Publishers. 2005

STARK, R., SCHMID, J, AND BORGER, E. Java and the Virtual Machine- Definition,
Verification, and Validation. 2001

SYSTEMC. http://www.systemc.org

TAWHAI , M., AND BEN-TAL, A. 2004. Multiscale Modeling for the Lung Physiome.
Cardiovascular Engineering: An International Journal, Vol. 4, No. 1., March 2004. pp 19-
26

VMWARE. http://www.vmware.com

XEN. http://www.xen.org

