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________________________________________________________________________ 
 
Medical device software is sometimes initially developed by using a PC simulation environment that executes 
models of both the device and a physiological system, and then later by connecting the actual medical device to 
a physical mockup of the physiological system. An alternative is to connect the medical device to a digital 
mockup of the physiological system, such that the device software executes as if it is interacting with a 
physiological system, but in fact all interaction is digital. Developing medical device software by interfacing 
with a digital mockup enables development without costly or dangerous physical mockups, allows testing of 
extreme conditions, and provides for execution that is faster or slower than real-time. We propose a SystemC-
based approach for digital mockup  capture and execution, which gives the medical device software developer 
the ability to start, stop, and step execution based on time intervals. Such an ability is in contrast with traditional 
instruction based debugging approaches, and gives a more powerful abstraction when testing medical device 
software. We detail our SystemC-based capture and execution approach, and provide data from experiments for 
a ventilator device interacting with a human respiration digital mockup. 
 
Categories and Subject Descriptors: B.5.2 [Hardware] – RTL, Optimization, Simulation; C.0 [Computer 
Systems Organization] – HW/SW Interfaces; D.1.3 [Concurrent Programming] -  Parallel 
Programming; 
General Terms: Design, Experimentation, Human Factors, Measurement, Performance 
Additional Key Words and Phrases: Digital mockups, SystemC, Spatial Computing, Medical Devices, Software 
Development, Emulation, Real-Time  
________________________________________________________________________ 
 
 
1. INTRODUCTION  

Medical device software is commonly developed using one of several approaches.  One 

approach involves modeling on a PC, shown in Figure 1(a). A designer develops models 

for both a medical device, such as a pacemaker or ventilator, and for the physiological 

system with which the device interacts, such as a heart or lung. Such a modeling 

approach supports rapid device software changes, supports simulations that execute faster 

(or slower) than real-time, and avoids potential safety issues that could arise when 

interacting with an actual physical system.  

A second approach, used after or instead of the modeling approach, runs the medical  
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device software on the actual medical device, which is connected to a physical mockup of 

the physiological system. Physical mockups range from simple structures, such as a 

balloon representing a lung, to computerized mechanical parts that dynamically react 

[Michigan Instruments], that can be set to mimic a range of conditions, and whose 

internal sensors can be interfaced to a computer for analysis and debugging. One 

disadvantage of interfacing to off-the-shelf physical mockups is the inability to adapt to 

new features, especially features not easily mimicked via mechanical means. For 

example, a future ventilator may sense human-generated nitric oxide concentrations 

(recently discovered to be significant in respiratory issues [Shin]) and adapt the output 

gas mix in response. However, no existing computerized mechanical test lung generates 

nitric oxide, nor is it clear how to create one. 

An alternative is to connect the actual medical device to a digital mockup of the 

physiological system. A digital mockup is a behavioral model that emulates the physical 

system.  In such a case, the medical device software executes as if it were interacting with 

a physiological system, but in fact all interaction is through a digital interface, as in 

Figure 1: Approaches to integrating an embedded device with the physical environment during 
design: (a) system model, (b) physical mockup, (c) digital mockup.     
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Figure 1(c). We consider a digital mockup platform with a sensor/actuator bypass method 

of integration [Sirowy], as shown in Figure 2(a). Under this scheme, the digital mockup 

taps directly into the information packets that carry the control and data bitsto and from 

the device’s sensors and actuators. The digital mockup includes models of the 

physiological system, of the physical connections between the device and physiological 

system, and of the sensors and actuators.  A supervisory system coordinates execution of 

the digital mockup and medical device. The sensor/actuator bypass method is in harmony 

with methods used in industrial “hardware-in-the-loop” practice today, shown in Figure 

2(b). Digital mockups combine the flexibility and faster-than-real-time execution benefits 

of PC simulation models with the advantages of developing software on an actual 

medical device. Digital mockups are also potentially less costly than physical mockups, 

which can cost tens of thousands of dollars. 

However, no common methodology exists for creating digital mockups. Towards this 

end, we sought to develop a general approach for time-controllable digital mockup 

execution. Digital mockups can be implemented through a variety of methods and on a 

variety of different platforms, trading off performance, complexity, size, and accuracy. 

While a medical device software developer may run a digital mockup directly on the 

physical development platform for increased performance and/or accuracy, another 

approach is to run the digital mockup on top of virtualized platform like an in-circuit 

emulator. By varying the rate at which the digital mockup generates samples, the digital 

mockup can still run faster than or in real-time to interface with the medical device 

software under test. A virtualized environment can also provide built-in and unobtrusive 

debug capabilities, allowing the designer to stop, start, and step through the digital 

Figure 2: Digital mock-up platform: (a) The bypass method of integration taps directly into the digital 
information packets that indicate the data/control values to/from the device sensors/actuators, (b) the method 

matches hardware-in-the-loop approaches used in industrial practice (figure courtesy of Boeing, 2009).   
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mockup to examine important system variables. The virtualized environment can exploit 

the digital mockup’s explicit notion of a simulated time step, allowing the designer to 

monitor the mockup using time-controllable debug. For example, a medical device 

software developer may wish to step through a wheezing lung that just coughed one time 

step at a time (physiological models are defined to compute the next system values in 

time based on a delta time parameter), observing subtle differences in pressure and 

volume in the digital lung that might not easily be observed when running in real-time.  

We describe a time-controllable SystemC-on-a-Chip framework that allows a medical 

device software developer to interface a medical device to a SystemC-based digital 

mockup, and start, stop, profile, and advance execution using explicit time-granularized 

debug commands. This is contrasted to a more traditional debugging approach, where 

debugging is performed at the instruction granularity, and which does not include an 

explicit notion of time. A time-granularized approach is generally more useful for 

physiological digital mockups, and provides a more powerful abstraction for developing 

and testing medical device software.   

 

2. SYSTEMC FOR SYNCHRONIZED PHYSIOLOGICAL MODELS 

There are a number of approaches to capturing and implementing physiological 

systems models.  Physiological systems are usually first modeled using systems 

(hundreds or thousands) of partial and ordinary differential equations. The model can 

then be captured for PC execution using a particular programming language, typically an 

expressive mathematical language like MML, Matlab, or VisSim. 

Another method to capturing physiological systems models is to use SystemC. 

SystemC is a set of libraries built on top of the C++ language that provides an event-

driven simulation kernel, allowing a designer to simulate a number of concurrently 

executing processes, and which supports precisely-timed communication based on 

simulated time. SystemC is a natural fit for capturing physiological systems models for a 

number of reasons.  The equations that represent most physiological systems are naturally 

expressed as a number of concurrently executing interconnected processes that execute in 

lockstep. Digital physiological mockups implemented in SystemC have the added 

advantage that freely available SystemC simulation environments exist that enable 

comprehensive PC testing. Further, the developer can run SystemC on a real development 

platform using an in-circuit emulation approach like SystemC-on-a-Chip [Sirowy], with 

the advantage that the SystemC-based digital mockup executes with real peripherals, and 

with real devices, like medical device platforms 



Figure 3:  Capturing physiological models in SystemC. (a) Portion of a mathematical model of the 
human lung. (b) Description of the model in SystemC. (c) Description using POSIX threads.  The 

POSIX threads approach requires implementing explicit lock-stepping mechanisms that detract from 
the model’s readability.   

Cbr       = Qbr / Vbr 
Fbr          = (Pair – Pbr) / Rbr 
dQbr/dt  = Fbr * (Cair + Cbr) + Falv * (Calv – Cbr) 
 

Class model : public sc_module { 
   sc_in_clk clock; 
 
   integrator Q_integ; 
 
   sc_signal<sc_uint<32> > Qbr, Qbr_t; 
   sc_signal<sc_uint<32> > Cbr, Fbr; 
 
   SC_CTOR { 
      Q_integ.clock(clock); 
      Q_integ.func(Qbr_t); 
      Q_integ.dt(dt); 
      Q_integ.out(Qbr); 
 
      SC_METHOD(cbr_func); 
      sensitive << clock; 
      SC_METHOD(fbr_func); 
      sensitive << clock; 
      SC_METHOD(qbr_t_func); 
      sensitive << clock; 
   } 
 
   void cbr_func( void ) { 
       Cbr = Qbr / Vbr; 
   } 
   void fbr_func( void ) { 
       Fbr = (Pair – Pbr) / Rbr; 
   } 
   void qbr_t_func( void ) { 
       Qbr_t = Fbr * (Cair + Cbr) + \ 
                     Falv * (Calv – Cbr); 
   } 
}; 
 

int cbr,fbr,qbr_t; 
sem_t  timestep_done,cbr_done;  
sem_t fbr_done,qbr_t_done; 
 
void * Cbr( void * arg ) { 
   while (1) { 
      sem_wait(&timestep_done); 
      cbr = Qbr / Vbr; 
      sem_post(&cbr_done); 
   } 
} 
 
void * Fbr( void * arg ) { 
   while(1) { 
      sem_wait(&timestep_done); 
      fbr = (Pair – Pbr) / Rbr; 
      sem_post(&fbr_done); 
   } 
} 
 
void * Qbr_t( void * arg ) { 
   while(1) { 
      sem_wait(&timestep_done); 
      sem_wait(&cbr_done); 
      sem_wait(&fbr_done); 
      qbr_t = fbr*(Cair + cbr) + 
Falv*(Calv – cbr); 
      sem_post(&qbr_t_done); 
   } 
} 
 
void * ClockTick( void * arg ) { 
   while(1){ 
      sem_wait(&qbr_t_done); 
      sem_post(&cbr_done); 
      sem_post(&fbr_done); 
      sem_post(&qbr_t_done); 
      sem_post(&timestep_done); 
   } 
} 
 
int main(){ 
   pthread_t pCbr; 
   pthread_t pFbr; 
   pthread_t pQbr_t; 
   … 
   pthread_create(&pCbr); 
   pthread_create(&pFbr); 
   pthread_create(&pQbr_t);   
   pthread_join(pCbr, NULL); 
   pthread_join(pFbr, NULL); 
   pthread_join(pQbr_t, NULL); 
 
   return 0; 
} 
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While solutions can be implemented in other parallel programming paradigms like 

POSIX threads or Java threads that also operate with precise timing constraints, 

physiological models are more naturally represented in SystemC, where lock-stepped 

execution is an intrinsic part of the language. A SystemC description can require less 

code, is more readable, and is also more extendable. Figure 3(a) shows a portion of a 

human lung model captured with three interconnected equations. Figure 3(b) shows the 

SystemC description and Figure 3(c) shows a more traditional POSIX–based parallel 

programming description of the model. The POSIX threads approach requires describing 

explicit tightly-coupled, time lock-stepping mechanisms that make the description more 

difficult to read, maintain, and extend. Additionally, there is no clear way to step through 

a POSIX implementation at the simulated time level without further introducing 

extraneous code into the model. Matlab can also model a number of interconnected 

equations using a mathematical approach, but like POSIX and Java descriptions, Matlab 

does not support explicit timing constructs, and debugging is still performed using 

standard instruction-granularity debug features. 

 

3. RELATED WORK 

[Pimentel and Tirat-Gefen] developed real-time digital mockups that interfaced to 

medical devices by connecting symmetric D/A (digital-to-analog) and A/D (analog-to-

digital) cards to each side.  Previous work by [Sirowy] focused on modest modifications 

to the medical device hardware and software such that a digital mockup could be 

connected directly. Sirowy’s approach still allows the addition of D/A and A/D 

attachments, but with the added advantage of allowing a designer to completely stay in 

the digital domain, and to accommodate situations where D/A or A/D conversions are 

complex (e.g., in the case of gas generation or sensing).  Other researchers have 

developed real-time physiological models [Botros], with a focus on describing the 

necessary architectures to achieve real-time. 

Several research efforts have emphasized creating and cataloging detailed 

physiological models [IUPS, NSR Physiome, Tawhai]. Those models are targeted for PC-

based simulation, yet could be used as a basis for digital mockups. Further, many 

physiological models are highly complex, often requiring hours or days to simulate a few 

seconds [Medgadget]. Our initial focus is on real-time digital mockups. 

There has been much work in the domain of synchronization mechanisms for 

distributed systems. [Lamport] describes methods to order events in a distributed system. 

[Kopetz] also specifies clock synchronization methods, but describes techniques used for 



a more general network topology.  In contrast, our system consists of only two directly 

connected components, and thus is a simpler synchronization problem because 

uncertainties in a general network need not be considered.  

There have been some efforts that focus on making time an explicit first class entity 

when designing and programming systems. [Lee] calls for the need to bring time to the 

forefront of programming languages and models, especially with the rise in cyber 

physical systems research.  [Lee] presents a taxonomy detailing several timing properties 

that should be explicitly expressed in programming languages for timing oriented 

behaviors. [Benini] develops methods for performing time granularity debugging by 

calculating time through knowledge of the system’s clock speed and the number of cycles 

between breakpoints.    

Much research has involved virtualization [Levis, Smith], with several commercial 

products developed in response to the need for portable virtual machines. VMware 

[Vmware] and the open source product Xen [Xen] concentrate on developing virtual 

machines that allow the end-user to run multiple operating systems concurrently. The 

Java Virtual Machine [Stark] allows the programmer to write operating system 

independent code, and tools like DOS Box and console emulators allow the user to run 

legacy applications in modern operating systems.  Fornaciari extends virtualization to 

FPGA platforms, giving the application designer a virtual view of an FPGA that is then 

physically mapped via operating system functionality.  Some work has focused on 

accelerating Java bytecode through the design of custom bytecode accelerators [Grulan, 

Parnis]. Virtualization has also been used to abstract complex microcontroller details 

from the beginning embedded systems student [Sirowy].  

There has also been some research in the field of hardware emulation for verification 

and testing, including the BEE reconfigurable platform [Chang], and network-on-chip 

emulation platforms [Genko]. [Nakamura] describes a hardware/software verification 

platform that uses shared register communication between a processor simulator and 

FPGA emulator. [Benini] describes virtual in-circuit emulation of SystemC circuits for 

co-verification and timing accurate prototyping.  [Rissa] evaluates the emulation speeds 

of several SystemC models compared to standard HDL models. Our work emphasizes an 

emulation framework with an explicit notion of time for time-controllable debug. 

 

4. SYSTEMC-ON-A-CHIP FRAMEWORK 

The SystemC-on-a-Chip framework, developed by [Sirowy], enables a 

designer/programmer to capture applications using SystemC, and immediately run them  



Figure 4:  SystemC-on-a-Chip framework. The SystemC-on-a-Chip framework allows a designer to 
write a SystemC application (a), compile that SystemC through the SystemC bytecode compiler to 

SystemC bytecode (b), and run that SystemC application immediately on any platform that supports 
the SystemC emulation engine (c). (d)  

class EDGE_DETECTOR : public 
sc_module { 
//signal declarations 
… 
EDGE_DETECTOR() { 
   SC_method(mainComp); 
   sensitive << dataReady; 
 
   SC_method(getPixel); 
   sensitive << clock.pos(); 
 
void getPixel(){ 
   … 
   dataReady.write(1); 
} 
 
void mainComp(){ 
    int i, j; 
    for(i = 0; i < 3; i++){ 
        for(j = 0; j < 3; j++){ 

… 
process(clock) 
READ $1 dataReady 
BGT $1 $0 Start 
J Done 
Start: ADDI $3 $0 0 -- GX[] -> 0 
ADDI $4 $0 9 -- GY[] -> 9 
ADDI $6 $0 18 -- bits[] -> 18 
ADDI $1 $0 -1 -- GX[0] = -1 
SW $1 0($3) 
ADDI $1 $0 0 -- GX[1] = 0 
SW $1 1($3) 
ADDI $1 $0 1 -- GX[2] = 1 
SW $1 2($3) 
ADDI $1 $0 -2 -- GX[3] = -2 
SW $1 3($3) 
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on any development platform which supports the SystemC emulation engine, without 

the need for costly synthesis and mapping tool suites. The SystemC-on-a-Chip 

framework follows the “write once, run anywhere” paradigm made popular by language 

frameworks like Java and C#.  

Figure 4 highlights the SystemC-on-a-Chip framework. A designer first writes 

SystemC code, a combination of traditional programming features and spatial 

programming constructs, which captures the desired functionality (shown in Figure 4(a)).  

The designer’s SystemC code runs through a SystemC bytecode compiler. The SystemC 

bytecode compiler parses the source SystemC code and outputs SystemC bytecode, 

shown in Figure 4(b). Akin to Java bytecode, SystemC bytecode is an intermediate form 

of the original SystemC code. SystemC bytecode is a combination of MIPS-like assembly 

level language instructions and special SystemC instructions, which retains all spatial and 

timing information from the original SystemC application. 

SystemC bytecode is supported by the SystemC emulation engine, shown in Figure 

4(c). The SystemC emulation engine can run on any development platform that supports 

a basic interface of a number of different peripherals, memories, and internal 

components. The SystemC emulation engine’s core is a SystemC emulation kernel. The 

SystemC emulation kernel consists of a lean event-driven kernel, a virtual machine to 

execute the SystemC bytecode instructions, and hooks and access to the development 

platform’s peripheral set.  The lean event kernel continually processes a series of ready-

to-run events. An event is placed on a queue when a signal value is updated and that 

signal is on the sensitivity list of a process. Each time step might consist of multiple delta 

time steps, in which a process may execute multiple times during a time step. After each 

delta step, the event kernel updates the signal values, and places any new sensitive 

processes onto the event queue. The event-driven kernel calls a bytecode virtual machine 

to execute each event in the event queue. The bytecode virtual machine supports the 

SystemC bytecode instruction set. Each process is allocated an instruction memory, 

register file, and local data memory. The virtual machine also contains proper hooks to 

communicate with the standard peripheral and I/O set.  The emulation engine supports 

platform I/O and peripheral access. The set of peripherals includes buttons, LEDs, 

UART, and input and output memories. The basic emulation engine supports SystemC 

descriptions that implement the interface shown in Figure 4(d). The SystemC application 

writer does not have to follow the standard interface, but the standard interface provides a 

convenient mapping between description’s signals and the available peripherals. More 

advanced platforms might choose to support a greater range of input and output 



peripherals. For instance, a SystemC-on-a-Chip framework specialized for digital 

mockup execution might support a large number of one-way serial connections for easy 

interfacing to existing medical devices. 

Additionally, the SystemC emulation engine optionally supports a portable USB 

download interface, allowing a designer to download a SystemC application (the 

bytecode version) to a SystemC emulation engine by simply inserting a USB stick into 

the platform. The SystemC emulation engine is responsible for running the SystemC 

bytecode, preserving the correct spatial and timing information.  

 

5. TIME-CONTROLLABLE DIGITAL MOCKUP EXECUTION 

The SystemC-on-a-Chip framework can be augmented to give the developer unobtrusive 

time-granularized debug and test capabilities.  In contrast to the standard instruction 

granularity debugging approaches, the SystemC-on-a-Chip framework can start, stop, 

and step a digital mockup’s simulated time, advancing time forward as slow or fast as the 

developer requires.  Figure 5 highlights the differences between instruction level and time 

granularity debugging.   

Figure 5:  Time-Controllable Debugging. In contrast to traditional instruction granularity 
debugging, time granularity debugging allows a developer to monitor system variables by explicitly 

controlling simulated time.   
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Time-controllable SystemC emulation possesses a number of advantages for digital 

mockup execution. First, the medical device software developer can control time by 

running simulations between the digital mockup and medical device faster than real-time. 

Running faster than real-time might allow a developer to simulate a night’s worth of 

breathing in just a few hours, or make possible the ability to test several different control 

algorithms on the medical device in a timely manner. The ability to run faster than real-

time is of course determined by the delta time step at which the digital mockup is 

executing and how powerful the underlying platform is, but for many examples, running 

faster than real-time is feasible.  

Another advantage is the debugger can step through the execution of the digital 

mockup at the level of time granularity the digital mockup computes. Stepping using an 

explicit notion of time might allow a medical device software developer to step through a 

simulated cough of a digital lung mockup, a heart murmur in a digital heart mockup, or 

other anomalies and subtleties that might not otherwise be seen, or easily observed, 

executing at faster speeds.   

 

6. EXPERIMENTS 

We conducted several experiments to test the feasibility of capturing digital mockups 

using SystemC, interfacing those models using the SystemC-on-a-Chip framework to a 

medical device, and testing the ability to control time by configuring faster than real-time 

execution and incrementally stepping through time. We built a SystemC-on-a-Chip 

framework to run on a Xilinx Virtex5 FPGA platform. We wrote the SystemC-on-Chip 

framework in approximately 20,000 lines of C, C++, and VHDL.  The main emulation 

kernel was built on top of a Xilinx Microblaze processor, with custom bytecode 

accelerators [Sirowy] built on the native FPGA fabric for increased performance. We also 

built SystemC-on-a-Chip frameworks for a Xilinx Virtex4 Ml403 platform, and a Xilinx 

Spartan 3E platform. The Virtex4 implementation was built on top of a PowerPC-based 

system. All of the SystemC-on-a-Chip implementations could execute the same SystemC 

bytecode without recompiling for any particular platform.  

We described a number of physiological models in SystemC that we obtained from 

the NSR Physiome Project. Figure 6 shows a portion of the SystemC code used to capture 

a two-compartmental respiratory system, one bronchial compartment and one alveolar 

compartment.  The respiratory system model computes airway pressure, lung pressure, 

flow, and volume values for a healthy human lung at a simulated time step of 

approximately 4 milliseconds. The respiratory system was modeled using a series of four 



ordinary differential equations, and nine linear equations. We modeled the respiratory 

system using approximately 400 lines of behavioral SystemC. The SystemC description 

compiled to approximately 500 lines of SystemC bytecode, and compiled through the 

SystemC bytecode compiler in less than a second. 

Figure 6:  SystemC Implementation of a two-compartment respiratory system digital mockup.  

#include “systemc.h” 
 
template<int bit = 32> 
class integrator : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<32> > dt; 
   sc_in<sc_uint<32> > funct; 
   sc_out<sc_uint<32> > out; 
 
    sc_signal<sc_uint<32> > reg; 
 
   integrator( sc_module_name n ) sc_module (n)  
{ 
      sc_method(process); 
      sensitive << clock; 
   } 
   void process(void) { 
      reg = funct.read() * dt.read() + reg; 
      out.write(reg); 
   } 
}; 
 
class model : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<32> > qalv, valv, qbr, vbr; 
   sc_out<sc_uint<32> > qalv_t, valv_t; 
   sc_out<sc_uint<32> > qbr_t,    vbr_t; 
 
   sc_signal<sc_uint<32> > pbr, palv, fbr; 
  sc_signal<sc_uint<32> > falv, cbr, calv; 
 
   model( sc_module_name n ) : sc_module(n)   { 
      SC_METHOD(pbr_func); 
      sensitive << clock; 
      //… 
      SC_METHOD(qalv_t_func); 
      sensitive << clock; 
   } 
 
   void pbr_func(void) { 
      int COM_BR = 0x100; 
      int VBR_0 = 0x9600; 
      pbr = vbr.read() - VBR_0 / COM_BR; 
   } 
 
   //… 
 
   void qalv_func(void) { 
      qalv_t.write(falv * (cbr + calv)); 
   } 
}; 
 

class top : public sc_module { 
   sc_in_clk clock; 
   sc_in<sc_uint<4> > buttons; 
   sc_in<sc_uint<32> > memory_in; 
   sc_in<sc_uint<8> > uart_rx; 
   sc_out<sc_uint<8> > uart_tx; 
   sc_out<sc_uint<32> > fb_h; 
   sc_out<sc_uint<32> > fb_v; 
   sc_out<sc_uint<32> > fb_data; 
   sc_out<sc_uint<4> > leds; 
 
   sc_signal<sc_uint<32> > Qbr_t, Qalv_t; 
   sc_signal<sc_uint<32> > Vbr_t, Valv_t; 
   sc_signal<sc_uint<32> > Qbr, Qalv;   
sc_signal<sc_uint<32> > Vbr, Valv; 
   sc_signal<sc_uint<32> > dt; 
 
   model model_1; 
   integrator<32> integrator_Qalv; 
   integrator<32> integrator_Qbr; 
   integrator<32> integrator_Valv; 
   integrator<32> integrator_Vbr; 
 
   top( sc_module_name n ) : sc_module(n)   
   { 
      dt.write(0x1);    
 
      model_1->clock(clock); 
      model_1->qalv(Qalv); 
      model_1->qbr(Qbr); 
      model_1->valv(Valv); 
      model_1->vbr(Vbr); 
      model_1->qalv_t(Qalv_t); 
      model_1->qbr_t(Qbr_t); 
      model_1->valv_t(Valv_t); 
      model_1->vbr_t(Vbr_t); 
 
      integrator_Qalv->clock(clock); 
      integrator_Qalv->dt(dt); 
      integrator_Qalv->funct(Qalv_t); 
      integrator_Qalv->out(Qalv); 
 
      //… 
 
      integrator_Vbr->clock(clock); 
      integrator_Vbr->dt(dt); 
      integrator_Vbr->funct(Vbr_t); 
      integrator_Vbr->out(Vbr); 
   } 
};   
 



 We executed the digital respiratory mockup on the Xilinx Virtex5 implementation of 

the SystemC-on-a-Chip development platform. At full speed, the SystemC-on-a-Chip 

platform could execute a full simulated time step in 1.6 milliseconds, or about 3X faster 

than real-time. We also modeled an alternate implementation of a lung that computes 

concentration, lung mass, flow, bronchial pressure, and alveolar pressure. The system 

consisted of four equations, one of which was an ordinary differential equation. We 

modeled the system using 600 lines of structural SystemC. The SystemC bytecode 

compiler compiled the model to approximately 300 lines of SystemC bytecode. While the 

model computed fewer equations than the previous model, the SystemC-on-a-Chip 

framework took longer to compute one time step because the model was captured 

structurally with more interconnected processes. Figure 7 summarizes the models.  

Figure 8 illustrates one of our prototype setups for a ventilator and the respiratory 

system digital mockup.  The digital mockup communicates to the ventilator through four 

dedicated serial connections and one synchronization channel. The dedicated serial 

connections bypass the ventilator’s airway pressure, lung pressure, flow, and volume 

transducers. The synchronization channel is used to ensure that both models are sampling 

at the same frequency. Since the digital mockup can simulate time 3X faster than real-

time when running on the virtualized platform, the medical device and digital mockup 

use the synchronization channel to agree on a rate at which both devices operate 

[Sirowy]. The rate at which the devices operate is user-defined by a separate PC-based 

debug interface, and shown in Figure 8(a).  

We tested the usefulness of the time controllability of the test platform by developing 

a prototype PC-based debugging application. The debugger is able to stop, start, and 

advance time at the smallest simulated time rate the digital mockup can achieve (approx. 

Figure 7:  SystemC Digital Mockup Implementation Summary.  Both respiration models were 
obtained from the NSR Physiome Project and manually converted to concurrently executing 

SystemC implementations.   

Digital Mockup     # of Eqns.    # of ODEs    SystemC LOC   Simulate Dt    Simulated Freq 

 Alveolar 
Bronchial Lung 
w/ Gas Exchange 

 First Order Non-
Linear Lung  

 13 4 430 2-8 s 

 4 

~800 Hz 

1 570 2-8 s ~600 Hz 

(Behavioral) 

(Structural) 



4 milliseconds). Figure 8(b) shows that even with a simple debugging interface we can 

step through several steps of lung breathing, monitor pressures, volumes, and gas 

concentrations, and also make sure the ventilator software is performing correctly. The 

time-controllable debug commands given to the digital mockup propagate to the 

ventilator via the synchronization channel. 

 

7 CONCLUSIONS 

Developing medical device software by interfacing with a digital mockup enables 

development without costly or dangerous physical mockups, and enables execution that is 

faster or slower than real-time. Developing digital mockups in SystemC has the added 

advantages that the description closely models the high level mathematical and physical 

model, can be tested extensively with freely available SystemC support libraries, and can 

interface to real medical device software through the use of the SystemC-on-a-Chip 

framework. The SystemC-on-a-Chip framework enables time-controllable debug 

features, making possible the ability to step through a digital mockup’s execution through 

simulated time. We tested the feasibility of such an approach by modifying the existing 

SystemC-on-a-Chip framework to support time-controllable debug, and also tested 

multiple respiratory digital mockup examples. We currently are modifying a commercial 

ventilation system to interact with SystemC-based digital mockups. 

 

Figure 8:  Medical device(ventilator) and digital mockup(lung) prototype setup. (a)The digital 
mockup can be time-controlled using a simple PC-based debug interface. (b)The digital mockup and 

ventilator communicating digitally. 
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