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Medical device software is sometimes initially deped by using a PC simulation environment thateses
models of both the device and a physiological sysgnd then later by connecting the actual mediesice to

a physical mockup of the physiological system. Ateraative is to connect the medical device tdigital
mockup of the physiological system, such that the dewoéiware executes as if it is interacting with a
physiological system, but in fact all interactiandigital. Developing medical device software bieifacing
with a digital mockup enables development withoastly or dangerous physical mockups, allows testihg
extreme conditions, and provides for execution thdaster or slower than real-time. We propose/ste®nC-
based approach for digital mockup capture andwutiat, which gives the medical device software dgver
the ability to start, stop, and step execution dasgime intervals. Such an ability is in contrast with itamhal
instruction based debugging approaches, and gives a more pbwabdtraction when testing medical device
software. We detail our SystemC-based capture aecuidon approach, and provide data from experiséont

a ventilator device interacting with a human respan digital mockup.

Categories and Subject Descriptors: B.3#arfdware] — RTL, Optimization, Simulation; C.0Computer
Systems Or ganization] — HW/SW Interfaces; D.1.3Joncurrent Programming] - Parallel

Programming;

General Terms: Design, Experimentation, Human FacMeasurement, Performance

Additional Key Words and Phrases: Digital mockupgstemC, Spatial Computing, Medical Devices, Saféwa
Development, Emulation, Real-Time

1. INTRODUCTION

Medical device software is commonly developed uging of several approaches. One
approach involves modeling on a PC, shown in Fideg. A designer develops models
for both a medical device, such as a pacemakeeutilator, and for the physiological
system with which the device interacts, such asearthor lung. Such a modeling
approach supports rapid device software changpposts simulations that execute faster
(or slower) than real-time, and avoids potentidietsaissues that could arise when
interacting with an actual physical system.

A second approach, used after or instead of thestimgdapproach, runs the medical
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Figure 1: Approaches to integrating an embedded device Wwilphysical environment during
design: (a) system model, (b) physical mockupgdigital mockup
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device software on the actual medical device, wisatonnected to a physical mockup of
the physiological system. Physical mockups rangenfisimple structures, such as a
balloon representing a lung, to computerized meichhmparts that dynamically react
[Michigan Instruments], that can be set to mimicdamge of conditions, and whose
internal sensors can be interfaced to a computeraf@alysis and debugging. One
disadvantage of interfacing to off-the-shelf phgsimockups is the inability to adapt to
new features, especially features not easily migdckiia mechanical means. For
example, a future ventilator may sense human-geteraitric oxide concentrations
(recently discovered to be significant in respirgtssues [Shin]) and adapt the output
gas mix in response. However, no existing compzedrimechanical test lung generates
nitric oxide, nor is it clear how to create one.
An alternative is to connect the actual medicalickevo a digital mockup of the

physiological system. Aligital mockup is a behavioral model that emulates the physical
system. In such a case, the medical device saftexecutes as if it were interacting with

a physiological system, but in fact all interactignthrough a digital interface, as in



Figure 2: Digital mock-up platform: (a) The bypass methodntégration taps directly into the digital
information packets that indicate the data/contedlies to/from the device sensors/actuators, @ojrtethod
matches hardware-in-the-loop approaches used usindl practicef{gure courtesy of Boeing, 2009).
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Figure 1(c). We consider a digital mockup platfosith a sensor/actuator bypass method
of integration [Sirowy], as shown in Figure 2(aydér this scheme, the digital mockup
taps directly into the information packets thatrgahe control and data bitsto and from
the device’s sensors and actuators. The digital koqcincludes models of the
physiological system, of the physical connectioatMeen the device and physiological
system, and of the sensors and actuators. A sigpeywsystem coordinates execution of
the digital mockup and medical device. The senstréor bypass method is in harmony
with methods used in industrial “hardware-in-thegbd practice today, shown in Figure
2(b). Digital mockups combine the flexibility andster-than-real-time execution benefits
of PC simulation models with the advantages of tbgirg software on an actual
medical device. Digital mockups are also potentiddss costly than physical mockups,
which can cost tens of thousands of dollars.

However, no common methodology exists for creatiigital mockups. Towards this
end, we sought to develop a general approach foe-tiontrollable digital mockup
execution. Digital mockups can be implemented tghoa variety of methods and on a
variety of different platforms, trading off perfoamce, complexity, size, and accuracy.
While a medical device software developer may rudigital mockup directly on the
physical development platform for increased perfamoe and/or accuracy, another
approach is to run the digital mockup on topvitualized platform like an in-circuit
emulator. By varying the rate at which the digitadckup generates samples, the digital
mockup can still run faster than or in real-timeimterface with the medical device
software under test. A virtualized environment e#so provide built-in and unobtrusive

debug capabilities, allowing the designer to stsfart, and step through the digital



mockup to examine important system variables. Tiltealized environment can exploit
the digital mockup’s explicit notion of a simulatéiche step, allowing the designer to
monitor the mockup usingime-controllable debug For example, a medical device
software developer may wish to step through a wingdmng that just coughed one time
step at a time (physiological models are define@dmpute the next system values in
time based on alelta time parameter), observing subtle differences in pressurd
volume in the digital lung that might not easily digserved when running in real-time.
We describe éime-controllable SystemC-on-a-Chip framework that allows a medical
device software developer to interface a medicalicgdeto a SystemC-based digital
mockup, and start, stop, profile, and advance di@twsing explicit time-granularized
debug commands. This is contrasted to a more ivadit debugging approach, where
debugging is performed at thestruction granularity, and which does not include an
explicit notion of time. A time-granularized appobais generally more useful for
physiological digital mockups, and provides a mposverful abstraction for developing

and testing medical device software.

2. SYSTEMC FOR SYNCHRONIZED PHYSIOLOGICAL MODELS

There are a number of approaches to capturing ammementing physiological
systems models. Physiological systems are usuaiy modeled using systems
(hundreds or thousands) of partial and ordinarjedéhtial equations. The model can
then be captured for PC execution using a partiquiagramming language, typically an
expressive mathematical language like MML, MatlabYisSim.

Another method to capturing physiological systemsdels is to use SystemC.
SystemC is a set of libraries built on top of the+tdanguage that provides an event-
driven simulation kernel, allowing a designer tonglate a number of concurrently
executing processes, and which supports precisaBdt communication based on
simulated time. SystemC is a natural fit for caiptyiphysiological systems models for a
number of reasons. The equations that represestt physiological systems are naturally
expressed as a humber of concurrently executiegdohnected processes that execute in
lockstep. Digital physiological mockups implemented SystemC have the added
advantage that freely available SystemC simulagowironments exist that enable
comprehensive PC testing. Further, the developerua SystemC on a real development
platform using an in-circuit emulation approachelBystemC-on-a-Chip [Sirowy], with
the advantage that the SystemC-based digital moekaputes with real peripherals, and

with real devices, like medical device platforms



Figure 3: Capturing physiological models in SystemC. (ajtiBorof a mathematical model of the
human lung. (b) Description of the model in Systerfo¥ Description using POSIX threads. The
POSIX threads approach requires implementing expdick-stepping mechanisms that detract from

the model’'s readability.
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Class model : public sc_module {

sc_in_clk clock;

integrator Q_integ;

(©)

sc_signal<sc_uint<32> > Qbr, Qbr_t;

sc_signal<sc_uint<32> > Cbr, Fbr;

int cbr,fbr,gbr_t;
sem_t timestep_done,cbr_done;
sem_t for_done,qgbr_t_done;

void * Cbr( void * arg ) {
while (1) {
sem_wait(&timestep_done);
cbr = Qbr / Vbr;
sem_post(&cbr_done);

SC_CTOR { } ’

Q_integ.clock(clock);

Q_integ.func(Qbr_t); void * Fbr( void * arg ) {

Q_integ.dt(dt); while(1) {

Q_integ.out(Qbr); sem_wait(&timestep_done);
fbr = (Pair — Pbr) / Rbr;

SC_METHOD(cbr_func); sem_post(&fbr_done);

sensitive << clock;

SC_METHOD(fbr_func); }

sensitive << clock;

SC_METHOD(gbr_t_func); void * Qbr_t( void * arg ) {

sensitive << clock; while(1) {

}

void cbr_func( void ) {
Cbr = Qbr/ Vbr;

}
void fbr_func( void ) {
Fbr = (Pair — Pbr) / Rbr;

}
void gbr_t_func( void ) {

Qbr_t = Fbr * (Cair + Cbr) +\
Falv * (Calv — Cbr);

sem_wait(&timestep_done);

sem_wait(&cbr_done);

sem_wait(&fbr_done);

gbr_t = fbr*(Cair + cbr) +

Falv*(Calv — cbr);
sem_post(&gbr_t_done);

}

void * ClockTick( void * arg ) {
while(1){
sem_wait(&gbr_t_done);
sem_post(&cbr_done);
sem_post(&fbr_done);
sem_post(&gbr_t_done);
sem_post(&timestep_done);

SystemC implementatigh } }
much closer to the
mathematical model int main(){

Extraneous code t
implement synchronous
locksteps detract from
actual model

pthread_t pCbr;
pthread_t pFbr;
pthread_t pQbr_t;

pthread_create(&pChr);
pthread_create(&pFbr);
pthread_create(&pQbr_t);
pthread_join(pCbr, NULL);
pthread_join(pFbr, NULL);
pthread_join(pQbr_t, NULL);

return O;



While solutions can be implemented in other pargdlegramming paradigms like
POSIX threads or Java threads that also operath piecise timing constraints,
physiological models are more naturally represente®ystemC, where lock-stepped
execution is an intrinsic part of the language. yst8mC description can require less
code, is more readable, and is also more extendklgare 3(a) shows a portion of a
human lung model captured with three interconneetgpahtions. Figure 3(b) shows the
SystemC description and Figure 3(c) shows a maditional POSIX-based parallel
programming description of the model. The POSIé#us approach requires describing
explicit tightly-coupled, time lock-stepping meclems that make the description more
difficult to read, maintain, and extend. Additiolyathere is no clear way to step through
a POSIX implementation at the simulated time lewathout further introducing
extraneous code into the model. Matlab can alsoeitnadnumber of interconnected
equations using a mathematical approach, but IBSIR and Java descriptions, Matlab
does not support explicit timing constructs, anduwiging is still performed using

standard instruction-granularity debug features.

3. RELATED WORK

[Pimentel and Tirat-Gefen] developed real-time tdigimockups that interfaced to
medical devices by connecting symmetric D/A (digitaanalog) and A/D (analog-to-
digital) cards to each side. Previous work byd®y] focused on modest modifications
to the medical device hardware and software suelt #hdigital mockup could be
connected directly. Sirowy's approach still allowlse addition of D/A and A/D
attachments, but with the added advantage of aligwi designer to completely stay in
the digital domain, and to accommodate situatioherer D/A or A/D conversions are
complex (e.g., in the case of gas generation osisgh Other researchers have
developed real-time physiological models [Botrogfith a focus on describing the
necessary architectures to achieve real-time.

Several research efforts have emphasized creating eataloging detailed
physiological models [IUPS, NSR Physiome, TawhBijose models are targeted for PC-
based simulation, yet could be used as a basidifptal mockups. Further, many
physiological models are highly complex, often rieigg hours or days to simulate a few
seconds [Medgadget]. Our initial focus is on réaletdigital mockups.

There has been much work in the domain of synchadion mechanisms for
distributed systems. [Lamport] describes methodsrtier events in a distributed system.

[Kopetz] also specifies clock synchronization methaout describes techniques used for



a more general network topology. In contrast, xstem consists of only two directly
connected components, and thus is a simpler synidation problem because
uncertainties in a general network need not beidered.

There have been some efforts that focus on making &n explicit first class entity
when designing and programming systems. [Lee] datlthe need to bring time to the
forefront of programming languages and models, @affg with the rise in cyber
physical systems research. [Lee] presents a tamgmetailing several timing properties
that should be explicitly expressed in programmiagguages for timing oriented
behaviors. [Benini] develops methods for performimge granularity debugging by
calculating time through knowledge of the systealxk speed and the number of cycles
between breakpoints.

Much research has involved virtualization [Levisnith], with several commercial
products developed in response to the need foralplertvirtual machines. VMware
[Vmware] and the open source product Xen [Xen] eomiate on developing virtual
machines that allow the end-user to run multiplerapng systems concurrently. The
Java Virtual Machine [Stark] allows the programmigr write operating system
independent code, and tools like DOS Box and censolulators allow the user to run
legacy applications in modern operating systemsrn&ciari extends virtualization to
FPGA platforms, giving the application designeridual view of an FPGA that is then
physically mapped via operating system functiogalitSome work has focused on
accelerating Java bytecode through the design stboubytecode accelerators [Grulan,
Parnis]. Virtualization has also been used to abstcomplex microcontroller details
from the beginning embedded systems student [Sirowy

There has also been some research in the fieldroflrare emulation for verification
and testing, including the BEE reconfigurable gati [Chang], and network-on-chip
emulation platforms [Genko]. [Nakamura] describehadware/software verification
platform that uses shared register communicatiomvé®n a processor simulator and
FPGA emulator. [Benini] describes virtual in-circeimulation of SystemC circuits for
co-verification and timing accurate prototypingRigsa] evaluates the emulation speeds
of several SystemC models compared to standard Kbdels. Our work emphasizes an

emulation framework with an explicit notion of tinfer time-controllable debug.

4. SYSTEMC-ON-A-CHIP FRAMEWORK
The SystemC-on-a-Chip framework, developed by [8ylp enables a

designer/programmer to capture applications usysge®nC, andmmediately run them



Figure4: SystemC-on-a-Chip framework. The SystemC-on-a-@himework allows a designer to
write a SystemC applicatiq@), compile that SystemC through the SystemC bytecod®iler to

SystemC bytecodfb), and run that SystemC application immediately iy @atform that supports
the SystemC emulation engi(®. (d)

class EDGE_DETECTOR : publ

sc_module {~

IIsignal declarations

EDGE_DETECTQRé) {
SC_method(mainComp);
sensitive << dataReady;

SC_method(getPixel);
sensitive << clock.pos();

void getPixel(){
aétaReady.write(l);

void mainComp(){

int i, j;
for(i=0;i<3;i++){

SystemC
Bytecode
Compilel

@)

J Done

process(clock)
READ $1 dataReady
BGT $1 $0 Start

Start: ADDI $3 $0 0 -- GX[] -> 0
ADDI $4 $0 9 - GY[] -> 9
ADDI $6 $0 18 -- bits[] -> 18
ADDI $1 $0 -1 -- GX[0] = -1
SW $1 0($3)

ADDI $1 $0 0 -- GX[1] = 0
SW $1 1($3)

ADDI $1 $0 1 - GX[2] = 1
SW $1 2($3)

ADDI $1 $0 -2 - GX[3] = -2
SW $1 3($2
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on any development platform which supports the @y& emulation engine, without
the need for costly synthesis and mapping toolesuitThe SystemC-on-a-Chip
framework follows the “write once, run anywhere’rpdigm made popular by language
frameworks like Java and C#.

Figure 4 highlights the SystemC-on-a-Chip framewo#k designer first writes
SystemC code, a combination of traditional programgmfeatures and spatial
programming constructs, which captures the desiractionality (shown in Figure 4(a)).
The designer’s SystemC code runs through a SysteyteCode compiler. The SystemC
bytecode compiler parses the source SystemC codeoatputs SystemC bytecode,
shown in Figure 4(b). Akin to Java bytecode, Sy€dmytecode is an intermediate form
of the original SystemC code. SystemC bytecodecisnabination of MIPS-like assembly
level language instructions and special System€uations, which retains all spatial and
timing information from the original SystemC appaliion.

SystemC bytecode is supported by 8ystemC emulation engine, shown in Figure
4(c). The SystemC emulation engine can run on any dexwap platform that supports
a basic interface of a number of different peripk®er memories, and internal
components. The SystemC emulation engine’s coeeSstemC emulation kernel. The
SystemC emulation kernel consists of a lean eveawei kernel, a virtual machine to
execute the SystemC bytecode instructions, and shaokl access to the development
platform’s peripheral set. The lean event kermgltinually processes a series of ready-
to-run events. An event is placed on a queue when a signal value is updatedthat
signal is on the sensitivity list of a process. licime step might consist of multipdielta
time steps, in which a process may execute multiples during a time step. After each
delta step, the event kernel updates the signalesaland places any new sensitive
processes onto the event queue. The event-driverelkealls aoytecode virtual machine
to execute each event in the event queue. Byecode virtual machine supports the
SystemC bytecode instruction set. Each procesdldsated an instruction memory,
register file, and local data memory. The virtuaahine also contains proper hooks to
communicate with the standard peripheral and I/O Séhe emulation engine supports
platform 1/0O and peripheral access. The set of pberials includes buttons, LEDs,
UART, and input and output memories. The basic atiand engine supports SystemC
descriptions that implement the interface showRigure 4(d). The SystemC application
writer does not have to follow the standard integfebut the standard interface provides a
convenient mapping between description’s signat the available peripherals. More

advanced platforms might choose to support a gre@ege of input and output



peripherals. For instance, a SystemC-on-a-Chip dveonk specialized for digital
mockup execution might support a large number @&-way serial connections for easy
interfacing to existing medical devices.

Additionally, the SystemC emulation engine optibpadupports a portable USB
download interface, allowing a designer to downloadSystemC application (the
bytecode version) to a SystemC emulation enginsilmply inserting a USB stick into
the platform. The SystemC emulation engine is rasiide for running the SystemC

bytecode, preserving the correct spatial and tinmifgrmation.

5. TIME-CONTROLLABLE DIGITAL MOCKUP EXECUTION
The SystemC-on-a-Chip framework can be augmentgilveothe developer unobtrusive
time-granularized debug and test capabilities. In contrast to tladdrdinstruction
granularity debugging approaches, the SystemC-on-a-Chip framhewean start, stop,
and step a digital mockup’s simulated time, advagtime forward as slow or fast as the
developer requires. Figure 5 highlights the déferes between instruction level and time
granularity debugging.

Figure5: Time-Controllable Debugging. In contrast to tramitl instruction granularity

debugging, time granularity debugging allows a dgwer to monitor system variables by explicitly
controlling simulated time.
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Time-controllable SystemC emulation possesses abaumf advantages for digital
mockup execution. First, the medical device sofewdeveloper can control time by
running simulations between the digital mockup aretlical device faster than real-time.
Running faster than real-time might allow a develop simulate a night's worth of
breathing in just a few hours, or make possibleathiéity to test several different control
algorithms on the medical device in a timely maniére ability to run faster than real-
time is of course determined by the delta time saepvhich the digital mockup is
executing and how powerful the underlying platfasnbut for many examples, running
faster than real-time is feasible.

Another advantage is the debugger can step throlighexecution of the digital
mockup at the level of time granularity the digitabckup computes. Stepping using an
explicit notion of time might allow a medical degisoftware developer to step through a
simulated cough of a digital lung mockup, a heamtmur in a digital heart mockup, or
other anomalies and subtleties that might not etiser be seen, or easily observed,

executing at faster speeds.

6. EXPERIMENTS

We conducted several experiments to test the féisibf capturing digital mockups
using SystemC, interfacing those models using yse®C-on-a-Chip framework to a
medical device, and testing the ability to contimle by configuring faster than real-time
execution and incrementally stepping through tie built a SystemC-on-a-Chip
framework to run on a Xilinx Virtex5 FPGA platfornive wrote the SystemC-on-Chip
framework in approximately 20,000 lines of C, Cand VHDL. The main emulation
kernel was built on top of a Xilinx Microblaze pessor, with custom bytecode
accelerators [Sirowy] built on the native FPGA falfor increased performance. We also
built SystemC-on-a-Chip frameworks for a Xilinx ¥6x4 MI403 platform, and a Xilinx
Spartan 3E platform. The Virtex4 implementation vsa#it on top of a PowerPC-based
system. All of the SystemC-on-a-Chip implementationuld execute the same SystemC
bytecode without recompiling for any particulartfdam.

We described a number of physiological models ist&pC that we obtained from
the NSR Physiome Project. Figure 6 shows a podfdhe SystemC code used to capture
a two-compartmental respiratory system, one braiatompartment and one alveolar
compartment. The respiratory system model compaitegay pressure, lung pressure,
flow, and volume values for a healthy human lungaatsimulated time step of

approximately 4 milliseconds. The respiratory systgas modeled using a series of four



Figure6: SystemC Implementation of a two-compartment respiy system digital mockup.

#include “systemc.h” class top : public sc_module {
sc_in_clk clock;
template<int bit = 32> sc_in<sc_uint<4> > buttons;
class integrator : public sc_module { SC_in<sc_uint<32> > memory_in;
sc_in_clk clock; SC_in<sc_uint<8> > uart_rx;
sc_in<sc_uint<32> > dt; SC_out<sc_uint<8> > uart_tx;
sC_in<sc_uint<32> > funct; sc_out<sc_uint<32> > fb_h;
SC_out<sc_uint<32> > out; sc_out<sc_uint<32> > fb_v;
Sc_out<sc_uint<32> > fb_data;
sc_signal<sc_uint<32> > reg; SC_out<sc_uint<4> > leds;

integrator( sc_module_name n) sc_module (n) sc_signal<sc_uint<32> > Qbr_t, Qalv_t;
sc_signal<sc_uint<32> > Vbr_t, Valv_t;

sc_method(process); sc_signal<sc_uint<32> > Qbr, Qalv;
sensitive << clock; sc_signal<sc_uint<32> > Vbr, Valv;
} sC_signal<sc_uint<32> > dt;
void process(void) {
reg = funct.read() * dt.read() + reg; model model_1;
out.write(reg); integrator<32> integrator_Qalv;
integrator<32> integrator_Qbr;
k integrator<32> integrator_Valv;

integrator<32> integrator_Vbr;
class model : public sc_module {

sc_in_clk clock; top( sc_module_name n ) : sc_module(n)
sc_in<sc_uint<32> > qalv, valv, gbr, vbr;
sSc_out<sc_uint<32> > galv_t, valv_t; dt.write(0x1);

SC_out<sc_uint<32>>qgbr_t, vbr_t;
model_1->clock(clock);

sc_signal<sc_uint<32> > pbr, palv, fbr; model_1->qgalv(Qalv);
sc_signal<sc_uint<32> > falv, cbr, calv; model_1->gbr(Qbr);
model_1->valv(Valv);
model( sc_module_name n ) : sc_module(n) { model_1->vbr(Vbr);
SC_METHOD(pbr_func); model_1->galv_t(Qalv_t);
sensitive << clock; model_1->gbr_t(Qbr_t);
... model_1->valv_t(Valv_t);
SC_METHOD(galv_t_func); model_1->vbr_t(Vbr_t);
sensitive << clock;
} integrator_Qalv->clock(clock);
integrator_Qalv->dt(dt);
void pbr_func(void) { integrator_Qalv->funct(Qalv_t);
int COM_BR = 0x100; integrator_Qalv->out(Qalv);
int VBR_0 = 0x9600;
pbr = vbr.read() - VBR_0 / COM_BR,; ...
}
integrator_Vbr->clock(clock);
Il... integrator_Vbr->dt(dt);
integrator_Vbr->funct(Vbr_t);
void galv_func(void) { integrator_Vbr->out(Vbr);
galv_t.write(falv * (cbr + calv)); }
h

ordinary differential equations, and nine lineau&ipns. We modeled the respiratory
system using approximately 400 lines of behavi@gtemC. The SystemC description
compiled to approximately 500 lines of SystemC bgtke, and compiled through the

SystemC bytecode compiler in less than a second.



We executed the digital respiratory mockup onXHimx Virtex5 implementation of
the SystemC-on-a-Chip development platform. At fleed, the SystemC-on-a-Chip
platform could execute a full simulated time stepli6 milliseconds, or about 3X faster
than real-time. We also modeled an alternate impigation of a lung that computes
concentration, lung mass, flow, bronchial pressarg] alveolar pressure. The system
consisted of four equations, one of which was adinary differential equation. We
modeled the system using 600 lines of structurate&yC. The SystemC bytecode
compiler compiled the model to approximately 30@4 of SystemC bytecode. While the
model computed fewer equations than the previousleahe SystemC-on-a-Chip
framework took longer to compute one time step bseathe model was captured
structurally with more interconnected processeguie 7 summarizes the models.

Figure 8 illustrates one of our prototype setupsdoventilator and the respiratory
system digital mockup. The digital mockup commates to the ventilator through four
dedicated serial connections and one synchronizatitannel. The dedicated serial
connections bypass the ventilator's airway presslumeg pressure, flow, and volume
transducers. The synchronization channel is usetsare that both models are sampling
at the same frequency. Since the digital mockupsianulate time 3X faster than real-
time when running on the virtualized platform, tmedical device and digital mockup
use the synchronization channel to agree on a aatehich both devices operate
[Sirowy]. The rate at which the devices operatedsr-defined by a separate PC-based
debug interface, and shown in Figure 8(a).

We tested the usefulness of the time controllabdftthe test platform by developing
a prototype PC-based debugging application. Theugtpr is able to stop, start, and

advance time at the smallest simulated time ratedifital mockup can achieve (approx.

Figure7: SystemC Digital Mockup Implementation Summary.ttB@spiration models were
obtained from the NSR Physiome Project and mangaltywerted to concurrently executing
SystemC implementations.

Digital Mockup | # of Eqng. # of ODIEs Symte LOC| Simulate Di Simulated Freq
Alveolar -8

2°s ~
Bronchial Lung 13 4 430 . 800 Hz
w/ Gas Exchange (Behavioral)
Eirst Order Nont 4 1 570 28g ~600 Hz
Linear Lung (Structural)




Figure 8: Medical device(ventilator) and digital mockup(lyrmmototype setup. (a)The digital
mockup can be time-controlled using a simple PGtaebug interface. (b)The digital mockup and
ventilator communicating digitally.
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4 milliseconds). Figure 8(b) shows that even witkiraple debugging interface we can
step through several steps of lung breathing, monpressures, volumes, and gas
concentrations, and also make sure the ventilatfiware is performing correctly. The
time-controllable debug commands given to the diginockup propagate to the

ventilator via the synchronization channel.

7 CONCLUSIONS

Developing medical device software by interfacingghwa digital mockup enables
development without costly or dangerous physicatkaps, and enables execution that is
faster or slower than real-time. Developing digitabckups in SystemC has the added
advantages that the description closely modelsitje level mathematical and physical
model, can be tested extensively with freely abdé&systemC support libraries, and can
interface to real medical device software throupgb tise of the SystemC-on-a-Chip
framework. The SystemC-on-a-Chip framework enabtewe-controllable debug
features, making possible the ability to step tigioa digital mockup’s execution through
simulated time. We tested the feasibility of suchagpproach by modifying the existing
SystemC-on-a-Chip framework to support time-cotdfé debug, and also tested
multiple respiratory digital mockup examples. Werently are modifying a commercial

ventilation system to interact with SystemC-basigital mockups.
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