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ABSTRACT 
Field-programmable gate arrays (FPGAs) have recently been used 
as platforms to emulate SystemC descriptions. Emulation supports 
in-system testing using real input and output. We previously 
showed emulation speed to be competitive with SystemC 
simulations on a PC when the emulator uses acceleration engines. 
A limit on the number of acceleration engines that can fit on an 
emulation platform creates new online problems involving runtime 
decisions as to when to load a SystemC process into an acceleration 
engine. We define the online SystemC emulation acceleration 
problem. In contrast to previous works that focus on statically 
improving SystemC (and the more general event-driven) 
simulations, we utilize online heuristics to manage the use of a 
limited number of SystemC acceleration engines in an emulation 
framework, where the kernel must adapt and react to dynamically 
changing process and event queues. We test several online 
heuristics and show 9x improvement over microprocessor-only 
emulation and 5x over statically preloaded acceleration engines. 
We further improve emulation performance by 10-20% by adding 
kernel bypass connections between acceleration engines and by 
adapting the online heuristics to make use of those connections. 

Categories and Subject Descriptors 
B.5.2 [Hardware]: – RTL, Optimization, Simulation 
C.0 [Computer Systems Organization] – HW/SW Interfaces 
General Terms 
Algorithms, Design, Languages, Performance 
Keywords 
SystemC, Emulation, Simulation, Virtual Machines, Bytecode, 
Online Algorithms 

1. INTRODUCTION 
A SystemC description can be executed in various ways. One 
common way is to simulate the description on a PC. Simulation 
allows for testing of the description without expensive or 
unavailable physical hardware and without extensive time spent 
mapping to a physical platform. Drawbacks are that simulating a 
SystemC description might be slow or inaccurate, and that 
constructing input stimuli can be difficult and time-consuming 
while still not matching the complexity and nuances of real inputs 
and outputs (I/O). Another way is to synthesize a SystemC 
description to an ASIC, FPGA, or board-level customized 

implementation. A synthesized SystemC description benefits from 
interacting with physical I/O at high speed. However, SystemC 
synthesis tools can be expensive (compared to compilers), may 
only run on limited PC platforms and be challenging to install 
(especially on lower-end PCs), may be unpredictable with respect 
to circuit size/speed or tool runtime, often require long runtimes 
(such as hours or days), may not support particular target devices or 
platforms, and can only synthesize the parts of the code written for 
synthesis. A recent alternative to SystemC simulation or synthesis 
is SystemC in-system emulation, wherein SystemC bytecode 
executes on a processor interacting with real I/O [21]. The core of 
the SystemC emulation platform is a software-based SystemC 
kernel that consists of a SystemC bytecode virtual machine, an 
event-driven kernel, and access to on-board peripherals. Though 
slower than a synthesized implementation, emulation of an 
application (e.g., of an image processing system) enables early 
prototyping that benefits from real I/O rather than constructed I/O 
in simulation, as shown in Figure 1(a) and (b).   

For the common situation where the emulation platform is 
implemented on (or with access to) an FPGA, FPGA-based 
acceleration engines can increase emulation speed, enabling 
SystemC execution speed comparable to simulation on middle-to-
high-end PCs. Our SystemC acceleration engine has a MIPS-like 
datapath that executes the same bytecode that the SystemC kernel 
executes, but executes that bytecode orders of magnitude faster. 

One drawback of SystemC in-system emulation is that the 
ordering of events on the event queue is not known before runtime, 
making some existing static acceleration techniques like queue 
reordering [15] and process splitting [17] less effective. Figure 1(c) 
and (d) show how two different input sequences into a SystemC 
emulation image processing system can generate two different 
output sequences, for which an adaptive mapping of processes to 
acceleration engines can gain faster emulation performance. Our 
SystemC emulation framework allows for dynamic decisions of 
whether to execute a process’ bytecode on the microprocessor 
SystemC kernel or to load and execute that bytecode on an 
acceleration engine. However, acceleration engines are limited, and 
loading acceleration engines involves time overhead, so load 
decisions should be made so as to minimize total execution time.  

Thus, a problem exists as to how to efficiently utilize the 
limited number of SystemC acceleration engines to execute a 
changing event-driven SystemC emulation event queue to 
minimize total emulation time. We define the online SystemC 
emulation acceleration problem, and apply online heuristics to 
dynamically improve the performance of SystemC emulation. 

The paper is organized as follows. Section 0 discusses related 
work. Section 3 summarizes the SystemC emulation architecture 
and SystemC bytecode accelerators. Section 4 defines the online 
SystemC emulation acceleration problem. Section 5 describes 
several dynamic heuristics. Section 6 details several experiments, 
and Section 7 concludes.  
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2. RELATED WORK 
Improving the performance of event-driven simulations has been 
extensively researched. Much research has concentrated on 
developing parallel frameworks for general event-driven 
simulation. Fujimoto [8] presents a comprehensive survey of 
several parallel simulation techniques.  Jefferson [15] analyzes the 
critical paths of event-driven simulations, and discusses techniques 
to achieve supercritical speedups in simulation. Das [7] discusses 
adaptive protocols for parallel simulations.  

Other work has focused specifically on improving SystemC 
simulations. Naguib [17] automatically splits SystemC processes to 
prevent unnecessary wake up calls to the SystemC event kernel. 
Perez [20] creates an optimized implementation of the SystemC 
kernel that utilizes acyclic scheduling. Wang [23] uses compiled 
simulation to eliminate unnecessary evaluations, and to improve 
simulation time. Our work focuses on dynamic SystemC emulation 
(rather than static SystemC simulation) whose behavior requires 
dynamic scheduling techniques to improve performance.  

Another area of research combines both of the above 
approaches to parallelize the SystemC simulation kernel. Chopard 
[4] and Combes [5] show how relaxing a number of constraints on 
the event queue makes feasible a parallel SystemC event-driven 
kernel.  Chandran [3] identifies methods to execute the SystemC 
kernel on simultaneous multiprocessor machines for faster 
performance. Our work utilizes FPGA resources to accelerate the 
execution of SystemC processes for faster emulation. 

Dynamic load balancing has been studied extensively in 
previous works [11][13][16]. The idea of dynamic load balancing is 
that migrating processes across a network from high load hosts to 
lower load hosts can minimize application execution time despite 
overhead in migrating processes between processors. Our online 

SystemC emulation acceleration problem can be considered a 
special case of dynamic load balancing with heterogeneous 
processing units and high migration overheads.   

Dynamic system optimizations have also been the focus of 
much research. Balarin [2] presents a survey of real-time embedded 
system scheduling, which classifies the problem into static 
scheduling and dynamic scheduling. Danne [6] introduced real-
time scheduling algorithms for periodic applications in an FPGA. 
Ghiasi [9] uses the task graph model to reorder task execution 
offline to minimize reconfiguration overhead. Huang and Vahid 
[12][13] developed new online heuristics for managing FPGA 
coprocessors in a dynamic environment. Noguera [18] proposed 
dynamic run-time hardware/software scheduling techniques for 
FPGAs emphasizing dynamic concurrent task scheduling. Steiger 
[22] proposed the use of a reconfigurable operating system to 
manage dynamically incoming tasks and the online scheduling 
problem. Our work applies some of these dynamic techniques to 
improve the performance of SystemC emulation. 

3. SYSTEMC IN-SYSTEM EMULATION 
ARCHITECTURE 
3.1 Base Architecture with Acceleration Engines 
A SystemC emulation architecture enables the execution of 
SystemC descriptions on real platforms without the need to 
synthesize/map for the particular platform, by executing an 
intermediate form of SystemC called SystemC bytecode [21].  
Figure 2 shows a basic SystemC emulation platform. The platform 
consists of a main processor that executes the SystemC kernel, 
which is a combination of a virtual machine and event-driven 
kernel. The SystemC kernel connects to the platform’s peripherals 
(memories, lights, buttons, timers, general I/O) through a shared 

Figure 1:  SystemC in-system emulation: (a) in-system emulation of a description allows testing with real I/O, (b) sample image processing 
system that invokes several different filters depending on the input, (c) statically mapping each process to either software or an acceleration 
engine results in widely-varied runtimes for different input sequences, (d) dynamically mapping SystemC processes in response to the input 
sequence results in faster emulation for all the input sequences.   
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class IMAGE_PROCESSING : 
public sc_module { 
//signal declarations… 
EDGE_DETECTOR() { 
   SC_method(mainComp); 
   sensitive << dataReady; 
   SC_method(getPixel); 
   sensitive << clock.pos(); 
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bus, allowing a SystemC description full access to a variety of 
peripherals.     

For the common situation where the emulation engine is 
implemented on (or with access to) an FPGA, the SystemC kernel 
can offload process emulation to a SystemC acceleration engine. 
An acceleration engine, shown in Figure 3(a), consists of a MIPS-
like datapath, communicates with the SystemC kernel via memory-
mapped registers, and executes SystemC bytecode faster than the 
SystemC kernel. 

3.2 Kernel Bypass 
We observed that the SystemC emulation platform possesses a 
memory bottleneck when both the main emulation kernel and the 
SystemC acceleration engines attempt to read and write the shared 

signal memories. To mitigate the memory bottleneck, we introduce 
kernel bypass connections, which are direct one-way connections 
between neighboring accelerators that allow the SystemC 
accelerators to communicate without having to read and write their 
values to shared memories via the system bus. Figure 3(b) shows 
the kernel bypass architecture for two SystemC accelerators. 
Another advantage of kernel bypass connections is that the 
emulation kernel also reduces some overhead of maintaining the 
event queue since the writing accelerator can directly flag the 
reading accelerator to start execution once the writing accelerator is 
done.  

To facilitate direct communication between two neighboring 
accelerators, we add a SystemC kernel-controlled configuration 
register and small signal cache. A signal cache is a small memory 
data structure that holds a signal identifier, the signal’s value, and a 
valid bit. If an accelerator is configured to be a kernel bypass 
reader, the acceleration engine will instead first look for a signal 
value in signal cache prior to fetching the value from the signal 
memory on the bus. Similarly, if a SystemC accelerator is 
configured as a kernel bypass writer, the SystemC accelerator will 
write to the connected accelerator’s signal cache by sending the 
signal’s ID and its current value. In contrast to the system bus that  
can take tens of cycles, the signal cache allows single-cycle signal 
writing and retrieval.  For each simulated time step, a utilized 
kernel bypass connection can save between tens and hundreds of 
cycles, depending on the number of signals written to and read 
from. 

The signal cache size is currently limited to ten signals. If two 
processes communicate with more than ten signals, the two 
processes must communicate through the bus-connected signal 
memories. Processes that communicate with more than ten signals 
can still see some speedup because ten read and writes to the 
system bus are eliminated every simulated time step.  

Figure 2:  SystemC emulation platform, with SystemC bytecode 
acceleration engines that speed up the SystemC kernel, 
communicating through a shared memory via a system bus.  
 
 
 

Figure 3: SystemC acceleration engines: (a) internal structure, (b) direct connection of two SystemC acceleration engines using a kernel bypass 
connection. In some situations, bypassing the bus and SystemC kernel can lead to significant speedup for a given SystemC description.   
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4. ONLINE ACCELERATION 
ASSIGNMENT 
4.1 Problem Definition 
We define the Online SystemC emulation acceleration problem as 
follows. Given are: 

• A process set P = {p1, p2, p3, ..pn} containing the n 
processes that comprise a given SystemC description.  

• A set of execution times Tp = {tp1, tp2, tp3,… tpn} 
containing the execution time of each process i running on 
the SystemC  kernel without communication overhead.   

• A set of execution times Tc = {tc1, tc2, tc3...,tcn} for each 
process i when running on a SystemC acceleration engine; 
the times do not include communication overhead.  

• A set of sizes S = {s1 ,s2, s3,…, sn} giving the size of each 
process i  in terms of number of bytecode instructions..  

• The total number of acceleration engines AE in the SystemC 
emulation framework. 

• The time to load one instruction into a SystemC acceleration 
engine TR. The total time to load an acceleration engine with 
process i can be thus be written as:  loading time(i) = TR*si. 

The online SystemC emulation acceleration problem must 
satisfy the following constraints:  

• Processes running on the SystemC kernel and on the 
acceleration engines may run in parallel, unless that process 
is the same process i. For instance, in the queue <p2, p1, p1, 
p1, p3>, the three instances of p1 must execute sequentially, 
but p2 and the first instance of p1 can run in parallel. 

• The SystemC kernel cannot be interrupted to run a process 
when the SystemC kernel is loading a process onto an 
acceleration engine or when the SystemC kernel is itself 
running a process. 

We define two additional constraints to the online SystemC 
emulation acceleration problem, which take advantage of the kernel 
bypass connections within the SystemC emulation framework: 

• A set O of process pairs (Oi, Oj) that satisfy the condition 
that all inputs into Oj are outputs from Oi. These process 
pairs can be determined statically and sent to the SystemC 
kernel at download time. The process pairs are treated as big 
processes that take 2 acceleration engines in the simulator.  

• The number of kernel bypass connections in the SystemC 
emulation platform. 

• The number of signal connections between each process pair 
(Oi, Oj). 

The dynamic input to the problem is an event queue Q, such as 
<p2, p1, p4, p2, p1, p1….>, that lists and orders the process 
instances that run on the platform for a given time step.   

The Online SystemC Emulation Acceleration problem is 
defined as an online problem: For each process in the event queue, 
using only knowledge of prior and current processes in the queue, 
determine whether to load that process into a SystemC acceleration 
engine, such that the time for the entire event queue (including 
future instances of the process in the queue) is minimized.  When a 
process is already loaded into a SystemC acceleration engine, we 
refer to the process as being acceleration-engine resident. The 
current process is the process that at a given time is to be executed 
next and for which the acceleration engine load determination must 
be made. Thus, the solution to the online SystemC emulation 
acceleration problem consists of an acceleration engine 
management decision for each process instance in the event queue. 
Each decision is either: load, don’t load, or already loaded. For a 

decision to load, the decision also lists a process that must be 
unloaded to make room for the new process being loaded. 

4.2 Communication Overhead 
The SystemC accelerators communicate with the SystemC kernel 
through memory-mapped registers and signal memories, which 
store the current and next values of each signal in the SystemC 
description. Our emulation architecture may have multiple 
acceleration engines running in parallel. The acceleration engines 
read/write to the system bus randomly which cause bus contention. 
We use queuing theory [9] to estimate average memory access 
delay, and model memory contention by the M/M/1 queue. The 
processes in the SystemC kernel and in the SystemC acceleration 
engines generate memory access requests through READ and 
WRITE bytecode instructions. We define the following:  
 Random memory access rate: The random memory access 

rate is the number of times a process i reads from memory, 
where λi is the memory access rate of running process i.  

 Bus service rate: µ. The bus service rate is the number of 
requests the system bus can process in a second. E.g. 
Assuming a 100Mhz memory bus, one access takes 20 
cycles, so µ=5M/s. 

 Average delay: The average delay is the number of cycles for 
one memory access. According to queuing theory, average 
delay for one access is D=λ/(µ(µ-λ)).  

 System delay: delay =  Dλ. 

5. HEURISTICS 
5.1 Upper and Lower Bounds 
An upper bound on total execution time can be determined by 
running every process on the SystemC kernel. A lower bound can 
be determined by assuming every process is preloaded onto an 
infinite set of existing SystemC acceleration engines, while 
considering communication overhead, referred to as the Infinite 
Accelerators bound.  

5.2 Accelerator Static Assignment 
To see the advantage of dynamically loading bytecode to the 
SystemC acceleration engines for higher performance emulation, 
we compare to a statically preloaded approach, which assumes 
each SystemC acceleration engine is initially loaded with one 
process’ bytecode each, and is not reloaded during runtime. At the 
beginning of SystemC emulation, the SystemC kernel assigns each 
acceleration engine a process to always execute when an instance 
arrives on the event queue. The acceleration engines are loaded 
with the processes that have the largest speedup potential (tpi-tci). 
Compared to dynamic techniques, the benefits of static accelerator 
assignment are one-time acceleration engine loading, and a simpler 
emulation event kernel. The drawbacks are that there might only be 
a few acceleration engines, and running the rest of the SystemC 
processes on the software SystemC kernel could be 
computationally expensive. An alternative method for static 
assignment would have been to utilize profile information to 
predict which processes execute most frequently. However, due to 
simulation complexity, profiling information may not be available.  

5.3 Greedy Heuristic  
A greedy heuristic can be defined that always loads the current 
process into a SystemC acceleration engine before executing. If the 



process is already acceleration-engine resident, the SystemC kernel 
just instructs the SystemC acceleration engine to begin executing. 
Otherwise, the SystemC kernel randomly chooses an idle SystemC 
acceleration engine into which to load the process’ bytecode 
instructions. In case all SystemC acceleration engines are busy 
running, the emulation kernel waits until one of the acceleration 
engines becomes idle. The time complexity of the greedy heuristic 
is O(1). However, the greedy heuristic may incur much loading 
overhead since it loads a SystemC acceleration engine with 
bytecode on every execution. Furthermore, the greedy heuristic 
attempts to use all available acceleration engines, which increases 
communication overhead on the system bus.      

5.4 Aggregate Gain  
We use the aggregate gain (AG) heuristic introduced in [13] to 
address the online SystemC emulation acceleration problem. The 
AG heuristic uses the history of application executions to attempt 
to predict future executions and hence to predict when 
reconfiguration overhead is worthwhile. The AG heuristic 
considers reconfiguration and communication overhead. The basic 
idea of AG is that the heuristic maintains an aggregate gain table 
for each process type running in the system. The gain is the time 
saved by running the process instance with the accelerator. The AG 
table gets updated when a new process arrives. The AG table shows 
which processes would have gained the most speedup by running in 
a SystemC acceleration engine. 

Sequences of processes on the event queue often exhibit 
temporal locality—recently-executed processes are more likely to 
execute in the near future than are processes from long ago. A 
fading factor f is thus introduced to refresh the AG table. The 
fading f is adaptive to the average loading time. The intuition of the 
loading, replacement, and wait decision is to make the total gain of 
the acceleration engine resident processes high. Thus, the load, 
replace, and wait decisions will be made only if the decision would 
not decrease the total gain of resident processes. 

We can alter the AG heuristic to support the additional kernel 
bypass feature. The modified AG heuristic treats tightly-coupled 
processes as one large process. The large process requires multiple 
acceleration engines and the heuristic assumes the acceleration 
engines of the large process must be loaded together. The load, 
replacement, and wait policies of the large process are similar to 
the definitions in original AG heuristic. 

6. EXPERIMENTS 
6.1 Framework 
We developed a simulator in C++ to test our heuristics, and applied 
the simulator to several SystemC descriptions. We also fully 
implemented two SystemC emulation platforms, one on a Xilinx 
Virtex4 Ml403 development platform, and one on a Xilinx Virtex5 
vlx110t development platform. The SystemC kernels ran on a 
PowerPC and Microblaze processor respectively, both operating at 
100 MHz. The SystemC kernels communicate to the acceleration 
engines and the rest of the peripherals through Xilinx’s PLB 
(processor local bus). The average memory access time is 40 cycles. 
The SystemC kernel uses a handshaking protocol over the PLB to 
communicate and load instructions into each of the acceleration 
engines. The total time to load one instruction (TR) onto an 
acceleration engine is approximately three microseconds. The 
Virtex4 Ml403 development platform could hold one acceleration 
engine, and the Virtex5 vlx110t development platform could hold 
three. For two of the accelerators in the Virtex5 vlx110t, we 

connected them for kernel-bypassed enabled execution. One 
accelerator was configured as a reader, and one was configured as a 
writer. We chose this configuration because reader/writer 
configuration is very common for streaming applications such as 
image processing, encryption, etc. Since streaming applications are 
widely used, we first studied a reader/writer configuration. We may 
consider other configurations in future works. The kernel bypass 
circuitry required 5% more of the Virtex5 vlx110t FPGA logic than 
the core acceleration engine. The SystemC emulation kernel was 
written in approximately 2500 lines of C code. The online 
heuristics consisted of only a few hundred lines of code.  

We applied our heuristics to an image filtering system 
(including a blur filter, an emboss filter, a sharpen filter, and 
several implementations of edge detection), a digital lung model 
[19], and a reconfigurable radiosity design [1]. We wrote the image 
filters, lung model, and reconfigurable radiosity designs in 
SystemC, capturing each design using multiple processes. We 
modeled several dynamic scenarios in which the image filters, lung 
model, and radiosity design might be used.  

For all experiments, because sequences involve some random 
ordering, we generated 20 sequences, and report the arithmetic 
average. The heuristics’ runtimes themselves were negligible. 

6.2 Evaluation 
Figure 4 shows total execution times of a suite of SystemC image 
processing, lung, and radiosity descriptions running on Virtex4 
Ml403 and Virtex5 vlx110t implementations of the SystemC 
emulation framework without the kernel bypass mechanism enabled.  

For the Virtex4 Ml403 implementation, the statically preloaded 
accelerator approach yielded about 1.5x speedup compared to 
software-only emulation (i.e., only running on the SystemC kernel 
with no acceleration engines). The greedy heuristic results in a 
slowdown of 50% compared to software-only emulation. This is 
because the heuristic reconfigures the accelerators without 
consideration of the high reconfiguration cost of downloading new 
bytecode instructions. The dynamic AG approach yields more 
speedup over software-only emulation and a statically preloaded 
approach: 3.5x and 2.3x respectively.   

For the Virtex5 vlx110t implementation, the statically 
preloaded accelerator approach yielded about 1.75x speedup 
compared to software-only emulation. Compared to the Virtex4 
Ml403 implementation that only had one accelerator, the nominal 
speedup achieved with the Virtex5’s three accelerators was 
unexpected, and was resulted due to the execution time of 
processes running without an acceleration engine.  The penalty also 
has been due to increased communication overheads on the system 
bus. The greedy heuristic was again about 50% slower than 
software-only emulation because of the high cost to reload the 
acceleration engines with new bytecode instructions. The AG 
heuristic performed 9x and 5x faster than software-only emulation 
and statically preloaded solutions, respectively. The AG heuristic 
takes the accelerator reloading cost into account and thus did not 
always reload the accelerators every time there was a new process 
on the event queue.   

Comparing with the Infinite Accelerators lower bound (i.e., all 
processes are accelerated without any loading overhead) shows that 
the AG heuristic obtains execution times on average within 15x 
slower on a platform with one accelerator because of the high 
loading time, and 8x slower on a platform with three accelerators of 
this lower bound.  The lower bound solution does not need to 
contend with the high reconfiguration time the other heuristics do. 



Future work could look into modifying the architecture for 
decreased reconfiguration times. 

Figure 5 shows the effect of enabling a kernel bypass 
connection between two accelerators on the Virtex5 vlx110t 
emulation platform (the Virtex4 Ml403 could only hold one 
acceleration engine, so kernel bypass was not applicable). On 
average, the SystemC examples improved their speedup by 11%. 
Blur and Sobel2 achieved 20% speedup with kernel bypass because 
they contained a few processes that had much communication. 
Other examples like Lung and Radiosity only improved by a few 
percent because of communication between processes. More kernel 
bypass connections could increase performance further.  

7. CONCLUSIONS 
SystemC emulation platforms benefit from adapting accelerator 
usage to a dynamic event queue. We defined the Online SystemC 
Emulation Acceleration problem and applied several online 
heuristics to improve emulation performance by 9x over emulating 
all of the SystemC on the SystemC emulation kernel, and 5x over 
statically preloading the acceleration engines. Online heuristics 
could further speedup emulation by up to 20% using kernel bypass.  
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Figure 4: Emulation runtime results of image filtering, lung, and 
radiosity examples emulated on two different emulation platforms.  AG 

performs up to 9x faster than software-only emulation, and 5x faster 
than a statically preloaded approach.  

 
 
 

  

Figure 5: Emulation runtimes without and with kernel bypass using 
the AG heuristic on the image processing examples. Kernel-bypass-
enabled emulations performed on average 11% better than without 

kernel bypass, and up to 20% in some examples.  
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