
Online SystemC Emulation Acceleration
Scott Sirowy, Chen Huang, and Frank Vahid *

Dept. of Computer Science and Engineering
University of California, Riverside

{ssirowy,chuang,vahid}@cs.ucr.edu
*Also with the Center for Embedded Computer Systems, University of California, Irvine

ABSTRACT
Field-programmable gate arrays (FPGAs) have recently been used
as platforms to emulate SystemC descriptions. Emulation supports
in-system testing using real input and output. We previously
showed emulation speed to be competitive with SystemC
simulations on a PC when the emulator uses acceleration engines.
A limit on the number of acceleration engines that can fit on an
emulation platform creates new online problems involving runtime
decisions as to when to load a SystemC process into an acceleration
engine. We define the online SystemC emulation acceleration
problem. In contrast to previous works that focus on statically
improving SystemC (and the more general event-driven)
simulations, we utilize online heuristics to manage the use of a
limited number of SystemC acceleration engines in an emulation
framework, where the kernel must adapt and react to dynamically
changing process and event queues. We test several online
heuristics and show 9x improvement over microprocessor-only
emulation and 5x over statically preloaded acceleration engines.
We further improve emulation performance by 10-20% by adding
kernel bypass connections between acceleration engines and by
adapting the online heuristics to make use of those connections.

Categories and Subject Descriptors
B.5.2 [Hardware]: – RTL, Optimization, Simulation
C.0 [Computer Systems Organization] – HW/SW Interfaces
General Terms
Algorithms, Design, Languages, Performance
Keywords
SystemC, Emulation, Simulation, Virtual Machines, Bytecode,
Online Algorithms

1. INTRODUCTION
A SystemC description can be executed in various ways. One
common way is to simulate the description on a PC. Simulation
allows for testing of the description without expensive or
unavailable physical hardware and without extensive time spent
mapping to a physical platform. Drawbacks are that simulating a
SystemC description might be slow or inaccurate, and that
constructing input stimuli can be difficult and time-consuming
while still not matching the complexity and nuances of real inputs
and outputs (I/O). Another way is to synthesize a SystemC
description to an ASIC, FPGA, or board-level customized

implementation. A synthesized SystemC description benefits from
interacting with physical I/O at high speed. However, SystemC
synthesis tools can be expensive (compared to compilers), may
only run on limited PC platforms and be challenging to install
(especially on lower-end PCs), may be unpredictable with respect
to circuit size/speed or tool runtime, often require long runtimes
(such as hours or days), may not support particular target devices or
platforms, and can only synthesize the parts of the code written for
synthesis. A recent alternative to SystemC simulation or synthesis
is SystemC in-system emulation, wherein SystemC bytecode
executes on a processor interacting with real I/O [21]. The core of
the SystemC emulation platform is a software-based SystemC
kernel that consists of a SystemC bytecode virtual machine, an
event-driven kernel, and access to on-board peripherals. Though
slower than a synthesized implementation, emulation of an
application (e.g., of an image processing system) enables early
prototyping that benefits from real I/O rather than constructed I/O
in simulation, as shown in Figure 1(a) and (b).

For the common situation where the emulation platform is
implemented on (or with access to) an FPGA, FPGA-based
acceleration engines can increase emulation speed, enabling
SystemC execution speed comparable to simulation on middle-to-
high-end PCs. Our SystemC acceleration engine has a MIPS-like
datapath that executes the same bytecode that the SystemC kernel
executes, but executes that bytecode orders of magnitude faster.

One drawback of SystemC in-system emulation is that the
ordering of events on the event queue is not known before runtime,
making some existing static acceleration techniques like queue
reordering [15] and process splitting [17] less effective. Figure 1(c)
and (d) show how two different input sequences into a SystemC
emulation image processing system can generate two different
output sequences, for which an adaptive mapping of processes to
acceleration engines can gain faster emulation performance. Our
SystemC emulation framework allows for dynamic decisions of
whether to execute a process’ bytecode on the microprocessor
SystemC kernel or to load and execute that bytecode on an
acceleration engine. However, acceleration engines are limited, and
loading acceleration engines involves time overhead, so load
decisions should be made so as to minimize total execution time.

Thus, a problem exists as to how to efficiently utilize the
limited number of SystemC acceleration engines to execute a
changing event-driven SystemC emulation event queue to
minimize total emulation time. We define the online SystemC
emulation acceleration problem, and apply online heuristics to
dynamically improve the performance of SystemC emulation.

The paper is organized as follows. Section 0 discusses related
work. Section 3 summarizes the SystemC emulation architecture
and SystemC bytecode accelerators. Section 4 defines the online
SystemC emulation acceleration problem. Section 5 describes
several dynamic heuristics. Section 6 details several experiments,
and Section 7 concludes.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06…$10.00

2. RELATED WORK
Improving the performance of event-driven simulations has been
extensively researched. Much research has concentrated on
developing parallel frameworks for general event-driven
simulation. Fujimoto [8] presents a comprehensive survey of
several parallel simulation techniques. Jefferson [15] analyzes the
critical paths of event-driven simulations, and discusses techniques
to achieve supercritical speedups in simulation. Das [7] discusses
adaptive protocols for parallel simulations.

Other work has focused specifically on improving SystemC
simulations. Naguib [17] automatically splits SystemC processes to
prevent unnecessary wake up calls to the SystemC event kernel.
Perez [20] creates an optimized implementation of the SystemC
kernel that utilizes acyclic scheduling. Wang [23] uses compiled
simulation to eliminate unnecessary evaluations, and to improve
simulation time. Our work focuses on dynamic SystemC emulation
(rather than static SystemC simulation) whose behavior requires
dynamic scheduling techniques to improve performance.

Another area of research combines both of the above
approaches to parallelize the SystemC simulation kernel. Chopard
[4] and Combes [5] show how relaxing a number of constraints on
the event queue makes feasible a parallel SystemC event-driven
kernel. Chandran [3] identifies methods to execute the SystemC
kernel on simultaneous multiprocessor machines for faster
performance. Our work utilizes FPGA resources to accelerate the
execution of SystemC processes for faster emulation.

Dynamic load balancing has been studied extensively in
previous works [11][13][16]. The idea of dynamic load balancing is
that migrating processes across a network from high load hosts to
lower load hosts can minimize application execution time despite
overhead in migrating processes between processors. Our online

SystemC emulation acceleration problem can be considered a
special case of dynamic load balancing with heterogeneous
processing units and high migration overheads.

Dynamic system optimizations have also been the focus of
much research. Balarin [2] presents a survey of real-time embedded
system scheduling, which classifies the problem into static
scheduling and dynamic scheduling. Danne [6] introduced real-
time scheduling algorithms for periodic applications in an FPGA.
Ghiasi [9] uses the task graph model to reorder task execution
offline to minimize reconfiguration overhead. Huang and Vahid
[12][13] developed new online heuristics for managing FPGA
coprocessors in a dynamic environment. Noguera [18] proposed
dynamic run-time hardware/software scheduling techniques for
FPGAs emphasizing dynamic concurrent task scheduling. Steiger
[22] proposed the use of a reconfigurable operating system to
manage dynamically incoming tasks and the online scheduling
problem. Our work applies some of these dynamic techniques to
improve the performance of SystemC emulation.

3. SYSTEMC IN-SYSTEM EMULATION
ARCHITECTURE
3.1 Base Architecture with Acceleration Engines
A SystemC emulation architecture enables the execution of
SystemC descriptions on real platforms without the need to
synthesize/map for the particular platform, by executing an
intermediate form of SystemC called SystemC bytecode [21].
Figure 2 shows a basic SystemC emulation platform. The platform
consists of a main processor that executes the SystemC kernel,
which is a combination of a virtual machine and event-driven
kernel. The SystemC kernel connects to the platform’s peripherals
(memories, lights, buttons, timers, general I/O) through a shared

Figure 1: SystemC in-system emulation: (a) in-system emulation of a description allows testing with real I/O, (b) sample image processing
system that invokes several different filters depending on the input, (c) statically mapping each process to either software or an acceleration
engine results in widely-varied runtimes for different input sequences, (d) dynamically mapping SystemC processes in response to the input
sequence results in faster emulation for all the input sequences.

 FPGA
SystemC
Kernel

Memory

System
 I/O

System
 I/O

SystemC In-System Emulation

(b)

Input Sequence 1:

Input Sequence 2:

Image processing system

Blur

 Sharp

Edge

Motion

Static
Mapping Output Sequence 1

Output Sequence 2

Dynamic
Mapping

Runtime

Output Sequence 1

Output Sequence 2

Dynamically responding to different input sequences and mapping SystemC processes to
available SystemC acceleration engines result in faster emulation.

(c)
class IMAGE_PROCESSING :
public sc_module {
//signal declarations…
EDGE_DETECTOR() {
 SC_method(mainComp);
 sensitive << dataReady;
 SC_method(getPixel);
 sensitive << clock.pos();

(a)

(d)

S

S

S M M

M

M

M

M

M

B

B B E

E

E

E

B B B

B

B

Engine 1
Acceleration Acceleration

Engine 2

bus, allowing a SystemC description full access to a variety of
peripherals.

For the common situation where the emulation engine is
implemented on (or with access to) an FPGA, the SystemC kernel
can offload process emulation to a SystemC acceleration engine.
An acceleration engine, shown in Figure 3(a), consists of a MIPS-
like datapath, communicates with the SystemC kernel via memory-
mapped registers, and executes SystemC bytecode faster than the
SystemC kernel.

3.2 Kernel Bypass
We observed that the SystemC emulation platform possesses a
memory bottleneck when both the main emulation kernel and the
SystemC acceleration engines attempt to read and write the shared

signal memories. To mitigate the memory bottleneck, we introduce
kernel bypass connections, which are direct one-way connections
between neighboring accelerators that allow the SystemC
accelerators to communicate without having to read and write their
values to shared memories via the system bus. Figure 3(b) shows
the kernel bypass architecture for two SystemC accelerators.
Another advantage of kernel bypass connections is that the
emulation kernel also reduces some overhead of maintaining the
event queue since the writing accelerator can directly flag the
reading accelerator to start execution once the writing accelerator is
done.

To facilitate direct communication between two neighboring
accelerators, we add a SystemC kernel-controlled configuration
register and small signal cache. A signal cache is a small memory
data structure that holds a signal identifier, the signal’s value, and a
valid bit. If an accelerator is configured to be a kernel bypass
reader, the acceleration engine will instead first look for a signal
value in signal cache prior to fetching the value from the signal
memory on the bus. Similarly, if a SystemC accelerator is
configured as a kernel bypass writer, the SystemC accelerator will
write to the connected accelerator’s signal cache by sending the
signal’s ID and its current value. In contrast to the system bus that
can take tens of cycles, the signal cache allows single-cycle signal
writing and retrieval. For each simulated time step, a utilized
kernel bypass connection can save between tens and hundreds of
cycles, depending on the number of signals written to and read
from.

The signal cache size is currently limited to ten signals. If two
processes communicate with more than ten signals, the two
processes must communicate through the bus-connected signal
memories. Processes that communicate with more than ten signals
can still see some speedup because ten read and writes to the
system bus are eliminated every simulated time step.

Figure 2: SystemC emulation platform, with SystemC bytecode
acceleration engines that speed up the SystemC kernel,
communicating through a shared memory via a system bus.

Figure 3: SystemC acceleration engines: (a) internal structure, (b) direct connection of two SystemC acceleration engines using a kernel bypass
connection. In some situations, bypassing the bus and SystemC kernel can lead to significant speedup for a given SystemC description.

 FPGA

SystemC Kernel

Acceleration
Engine 2

Acceleration
Engine 1

Memory
p1

p2 p3

System
 I/O

System
 I/O

Acceleration Engine

RISC
Datapath

Register
File

Local
Memory

Bus,
start,
load
logic

Core Acceleration Engine

Kernel Bypass Config

Signal Cache

Acceleration Engine

RISC
Datapath

Register
File

Local
Memory

Bus,
start,
load
logic

Core Acceleration Engine

Kernel Bypass Config

Signal Cache

System Bus

The direct connections between the core acceleration engine and
the adjacent signal cache allow the two acceleration engines to
communicate without using the system bus or shared memory.

Signals to the main datapath to communicate
with the signal cache rather than the system bus
when configured properly

(a)

(b)

System Bus

4. ONLINE ACCELERATION
ASSIGNMENT
4.1 Problem Definition
We define the Online SystemC emulation acceleration problem as
follows. Given are:

• A process set P = {p1, p2, p3, ..pn} containing the n
processes that comprise a given SystemC description.

• A set of execution times Tp = {tp1, tp2, tp3,… tpn}
containing the execution time of each process i running on
the SystemC kernel without communication overhead.

• A set of execution times Tc = {tc1, tc2, tc3...,tcn} for each
process i when running on a SystemC acceleration engine;
the times do not include communication overhead.

• A set of sizes S = {s1 ,s2, s3,…, sn} giving the size of each
process i in terms of number of bytecode instructions..

• The total number of acceleration engines AE in the SystemC
emulation framework.

• The time to load one instruction into a SystemC acceleration
engine TR. The total time to load an acceleration engine with
process i can be thus be written as: loading time(i) = TR*si.

The online SystemC emulation acceleration problem must
satisfy the following constraints:

• Processes running on the SystemC kernel and on the
acceleration engines may run in parallel, unless that process
is the same process i. For instance, in the queue <p2, p1, p1,
p1, p3>, the three instances of p1 must execute sequentially,
but p2 and the first instance of p1 can run in parallel.

• The SystemC kernel cannot be interrupted to run a process
when the SystemC kernel is loading a process onto an
acceleration engine or when the SystemC kernel is itself
running a process.

We define two additional constraints to the online SystemC
emulation acceleration problem, which take advantage of the kernel
bypass connections within the SystemC emulation framework:

• A set O of process pairs (Oi, Oj) that satisfy the condition
that all inputs into Oj are outputs from Oi. These process
pairs can be determined statically and sent to the SystemC
kernel at download time. The process pairs are treated as big
processes that take 2 acceleration engines in the simulator.

• The number of kernel bypass connections in the SystemC
emulation platform.

• The number of signal connections between each process pair
(Oi, Oj).

The dynamic input to the problem is an event queue Q, such as
<p2, p1, p4, p2, p1, p1….>, that lists and orders the process
instances that run on the platform for a given time step.

The Online SystemC Emulation Acceleration problem is
defined as an online problem: For each process in the event queue,
using only knowledge of prior and current processes in the queue,
determine whether to load that process into a SystemC acceleration
engine, such that the time for the entire event queue (including
future instances of the process in the queue) is minimized. When a
process is already loaded into a SystemC acceleration engine, we
refer to the process as being acceleration-engine resident. The
current process is the process that at a given time is to be executed
next and for which the acceleration engine load determination must
be made. Thus, the solution to the online SystemC emulation
acceleration problem consists of an acceleration engine
management decision for each process instance in the event queue.
Each decision is either: load, don’t load, or already loaded. For a

decision to load, the decision also lists a process that must be
unloaded to make room for the new process being loaded.

4.2 Communication Overhead
The SystemC accelerators communicate with the SystemC kernel
through memory-mapped registers and signal memories, which
store the current and next values of each signal in the SystemC
description. Our emulation architecture may have multiple
acceleration engines running in parallel. The acceleration engines
read/write to the system bus randomly which cause bus contention.
We use queuing theory [9] to estimate average memory access
delay, and model memory contention by the M/M/1 queue. The
processes in the SystemC kernel and in the SystemC acceleration
engines generate memory access requests through READ and
WRITE bytecode instructions. We define the following:
 Random memory access rate: The random memory access

rate is the number of times a process i reads from memory,
where λi is the memory access rate of running process i.

 Bus service rate: µ. The bus service rate is the number of
requests the system bus can process in a second. E.g.
Assuming a 100Mhz memory bus, one access takes 20
cycles, so µ=5M/s.

 Average delay: The average delay is the number of cycles for
one memory access. According to queuing theory, average
delay for one access is D=λ/(µ(µ-λ)).

 System delay: delay = Dλ.

5. HEURISTICS
5.1 Upper and Lower Bounds
An upper bound on total execution time can be determined by
running every process on the SystemC kernel. A lower bound can
be determined by assuming every process is preloaded onto an
infinite set of existing SystemC acceleration engines, while
considering communication overhead, referred to as the Infinite
Accelerators bound.

5.2 Accelerator Static Assignment
To see the advantage of dynamically loading bytecode to the
SystemC acceleration engines for higher performance emulation,
we compare to a statically preloaded approach, which assumes
each SystemC acceleration engine is initially loaded with one
process’ bytecode each, and is not reloaded during runtime. At the
beginning of SystemC emulation, the SystemC kernel assigns each
acceleration engine a process to always execute when an instance
arrives on the event queue. The acceleration engines are loaded
with the processes that have the largest speedup potential (tpi-tci).
Compared to dynamic techniques, the benefits of static accelerator
assignment are one-time acceleration engine loading, and a simpler
emulation event kernel. The drawbacks are that there might only be
a few acceleration engines, and running the rest of the SystemC
processes on the software SystemC kernel could be
computationally expensive. An alternative method for static
assignment would have been to utilize profile information to
predict which processes execute most frequently. However, due to
simulation complexity, profiling information may not be available.

5.3 Greedy Heuristic
A greedy heuristic can be defined that always loads the current
process into a SystemC acceleration engine before executing. If the

process is already acceleration-engine resident, the SystemC kernel
just instructs the SystemC acceleration engine to begin executing.
Otherwise, the SystemC kernel randomly chooses an idle SystemC
acceleration engine into which to load the process’ bytecode
instructions. In case all SystemC acceleration engines are busy
running, the emulation kernel waits until one of the acceleration
engines becomes idle. The time complexity of the greedy heuristic
is O(1). However, the greedy heuristic may incur much loading
overhead since it loads a SystemC acceleration engine with
bytecode on every execution. Furthermore, the greedy heuristic
attempts to use all available acceleration engines, which increases
communication overhead on the system bus.

5.4 Aggregate Gain
We use the aggregate gain (AG) heuristic introduced in [13] to
address the online SystemC emulation acceleration problem. The
AG heuristic uses the history of application executions to attempt
to predict future executions and hence to predict when
reconfiguration overhead is worthwhile. The AG heuristic
considers reconfiguration and communication overhead. The basic
idea of AG is that the heuristic maintains an aggregate gain table
for each process type running in the system. The gain is the time
saved by running the process instance with the accelerator. The AG
table gets updated when a new process arrives. The AG table shows
which processes would have gained the most speedup by running in
a SystemC acceleration engine.

Sequences of processes on the event queue often exhibit
temporal locality—recently-executed processes are more likely to
execute in the near future than are processes from long ago. A
fading factor f is thus introduced to refresh the AG table. The
fading f is adaptive to the average loading time. The intuition of the
loading, replacement, and wait decision is to make the total gain of
the acceleration engine resident processes high. Thus, the load,
replace, and wait decisions will be made only if the decision would
not decrease the total gain of resident processes.

We can alter the AG heuristic to support the additional kernel
bypass feature. The modified AG heuristic treats tightly-coupled
processes as one large process. The large process requires multiple
acceleration engines and the heuristic assumes the acceleration
engines of the large process must be loaded together. The load,
replacement, and wait policies of the large process are similar to
the definitions in original AG heuristic.

6. EXPERIMENTS
6.1 Framework
We developed a simulator in C++ to test our heuristics, and applied
the simulator to several SystemC descriptions. We also fully
implemented two SystemC emulation platforms, one on a Xilinx
Virtex4 Ml403 development platform, and one on a Xilinx Virtex5
vlx110t development platform. The SystemC kernels ran on a
PowerPC and Microblaze processor respectively, both operating at
100 MHz. The SystemC kernels communicate to the acceleration
engines and the rest of the peripherals through Xilinx’s PLB
(processor local bus). The average memory access time is 40 cycles.
The SystemC kernel uses a handshaking protocol over the PLB to
communicate and load instructions into each of the acceleration
engines. The total time to load one instruction (TR) onto an
acceleration engine is approximately three microseconds. The
Virtex4 Ml403 development platform could hold one acceleration
engine, and the Virtex5 vlx110t development platform could hold
three. For two of the accelerators in the Virtex5 vlx110t, we

connected them for kernel-bypassed enabled execution. One
accelerator was configured as a reader, and one was configured as a
writer. We chose this configuration because reader/writer
configuration is very common for streaming applications such as
image processing, encryption, etc. Since streaming applications are
widely used, we first studied a reader/writer configuration. We may
consider other configurations in future works. The kernel bypass
circuitry required 5% more of the Virtex5 vlx110t FPGA logic than
the core acceleration engine. The SystemC emulation kernel was
written in approximately 2500 lines of C code. The online
heuristics consisted of only a few hundred lines of code.

We applied our heuristics to an image filtering system
(including a blur filter, an emboss filter, a sharpen filter, and
several implementations of edge detection), a digital lung model
[19], and a reconfigurable radiosity design [1]. We wrote the image
filters, lung model, and reconfigurable radiosity designs in
SystemC, capturing each design using multiple processes. We
modeled several dynamic scenarios in which the image filters, lung
model, and radiosity design might be used.

For all experiments, because sequences involve some random
ordering, we generated 20 sequences, and report the arithmetic
average. The heuristics’ runtimes themselves were negligible.

6.2 Evaluation
Figure 4 shows total execution times of a suite of SystemC image
processing, lung, and radiosity descriptions running on Virtex4
Ml403 and Virtex5 vlx110t implementations of the SystemC
emulation framework without the kernel bypass mechanism enabled.

For the Virtex4 Ml403 implementation, the statically preloaded
accelerator approach yielded about 1.5x speedup compared to
software-only emulation (i.e., only running on the SystemC kernel
with no acceleration engines). The greedy heuristic results in a
slowdown of 50% compared to software-only emulation. This is
because the heuristic reconfigures the accelerators without
consideration of the high reconfiguration cost of downloading new
bytecode instructions. The dynamic AG approach yields more
speedup over software-only emulation and a statically preloaded
approach: 3.5x and 2.3x respectively.

For the Virtex5 vlx110t implementation, the statically
preloaded accelerator approach yielded about 1.75x speedup
compared to software-only emulation. Compared to the Virtex4
Ml403 implementation that only had one accelerator, the nominal
speedup achieved with the Virtex5’s three accelerators was
unexpected, and was resulted due to the execution time of
processes running without an acceleration engine. The penalty also
has been due to increased communication overheads on the system
bus. The greedy heuristic was again about 50% slower than
software-only emulation because of the high cost to reload the
acceleration engines with new bytecode instructions. The AG
heuristic performed 9x and 5x faster than software-only emulation
and statically preloaded solutions, respectively. The AG heuristic
takes the accelerator reloading cost into account and thus did not
always reload the accelerators every time there was a new process
on the event queue.

Comparing with the Infinite Accelerators lower bound (i.e., all
processes are accelerated without any loading overhead) shows that
the AG heuristic obtains execution times on average within 15x
slower on a platform with one accelerator because of the high
loading time, and 8x slower on a platform with three accelerators of
this lower bound. The lower bound solution does not need to
contend with the high reconfiguration time the other heuristics do.

Future work could look into modifying the architecture for
decreased reconfiguration times.

Figure 5 shows the effect of enabling a kernel bypass
connection between two accelerators on the Virtex5 vlx110t
emulation platform (the Virtex4 Ml403 could only hold one
acceleration engine, so kernel bypass was not applicable). On
average, the SystemC examples improved their speedup by 11%.
Blur and Sobel2 achieved 20% speedup with kernel bypass because
they contained a few processes that had much communication.
Other examples like Lung and Radiosity only improved by a few
percent because of communication between processes. More kernel
bypass connections could increase performance further.

7. CONCLUSIONS
SystemC emulation platforms benefit from adapting accelerator
usage to a dynamic event queue. We defined the Online SystemC
Emulation Acceleration problem and applied several online
heuristics to improve emulation performance by 9x over emulating
all of the SystemC on the SystemC emulation kernel, and 5x over
statically preloading the acceleration engines. Online heuristics
could further speedup emulation by up to 20% using kernel bypass.

8. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CNS-0614957 and DUE-0836905).

9. REFERENCES
[1] Baker, P., Todman, T., Styles, H., and Luk, W.

Reconfigurable Designs for Radiosity. FCCM 2005.
[2] Balarin, F. , Lavagno, L., and Murthy P. Scheduling for

Embedded Real-Time Systems. IEEE Design and Test of
Computers, 1998.

[3] Chandran, P., Chandra, J., Simon, B. P., and Ravi, D.
Parallelizing SystemC Kernel for Fast Hardware Simulation on
SMP Machines. Workshop on Parallel and Distributed
Simulation, 2009.

[4] Chopard, B., Combes, P., and Zory, J. A Conservative
Approach to SystemC Parallelization. Lecture Notes in
Computer Science. Volume 3994. 2006.

[5] Combes, P., Caron, E., Desprez, F., Chopard, B., and Zory, J.
Relaxing Synchronization in a Parallel SystemC Kernel. IEEE
international Symposium on Parallel and Distributed
Processing with Applications, 2008.

[6] Danne, K., Platzner, M. Periodic Real-Time Scheduling for
FPGA Computers. Intelligent Solutions in Embedded
Systems, 2005

[7] Das, S. R. Adaptive protocols for parallel discrete event
simulation. In 28th Conference on Winter Simulation, 1996.

[8] Fujimoto, R. M. 1989. Parallel discrete event simulation.
WSC 1989.

[9] Ghiasi, S. and Sarrafzadeh, M. Optimal reconfiguration
sequence management. ASP-DAC 2003.

[10] Gross, D., and Harris, C.M. Fundamentals of queueing
theory. John Wiley & Sons, Inc. New York, NY, USA. 1985.

[11] Harchol-Balter, M. and Downey, A. B. 1997. Exploiting
process lifetime distributions for dynamic load balancing.
ACM Trans. Comput. Syst. 15, 3 (Aug. 1997), 253-285

[12] Huang, C., and Vahid, F. Dynamic Coprocessor Management
for FPGA-Enhanced Compute Platforms. CASES 2008.

[13] Huang, C., and Vahid, F. Transmuting coprocessors: dynamic
loading of FPGA coprocessors. DAC 2009.

[14] Ishfaq Ahmad , Arif Ghafoor , Kishan Mehrotra, Performance
prediction of distributed load balancing on multicomputer
systems, ACM/IEEE conference on Supercomputing, 1991.

[15] Jefferson, D. and Reiher, P. Supercritical speedup. Annual
Simulation Symposium. 1991.

[16] Min-You Wu. On runtime parallel scheduling for processor
load balancing, IEEE TPDS 1997.

[17] Naguib, Y. N. and Guindi, R. S. Speeding Up SystemC
Simulation through Process Splitting. DATE 2007.

[18] Noguera, J., Badia, R.M. Dynamic run-time HW/SW
scheduling techniques for reconfigurable architectures.
CODES-ISSS 2002.

[19] NSR Physiome Project. http://nsr.bioeng.washington.edu/.
[20] Pérez, D. G., Mouchard, G., and Temam, O. A New

Optimized Implemention of the SystemC Engine Using
Acyclic Scheduling. DATE 2004.

[21] Sirowy, S., Miller, B. and Vahid, F. Portable SystemC-on-a-
Chip. CODES/ISSS 2009.

[22] Steiger, C., Walder, H., Platzner, M., AND THIELE, L. 2003.
Online Scheduling and Placement of Real-time Tasks to
Partially Reconfigurable Devices. RTSS 2003.

[23] Wang, Z. and Maurer, P. M. LECSIM: a Levelized event
driven compiled logic simulation.). DAC 1990.

Figure 4: Emulation runtime results of image filtering, lung, and
radiosity examples emulated on two different emulation platforms. AG

performs up to 9x faster than software-only emulation, and 5x faster
than a statically preloaded approach.

Figure 5: Emulation runtimes without and with kernel bypass using
the AG heuristic on the image processing examples. Kernel-bypass-
enabled emulations performed on average 11% better than without

kernel bypass, and up to 20% in some examples.

Without kernel bypass With kernel bypass

ms

Software-only Greedy

Lower bound

Statically
preloaded

AG

5150 4900

(1 Accelerator) (3 Accelerators)

48 32

