Portable SystemC-on-a-Chip

Abstract

SystemC allows description of a digital system gdiraditional
programming features as well as spatial connegtiféatures
common in hardware description languages. We descain
approach for in-system emulation of circuits ddsedi in
SystemC. The approach involves a new SystemC hygeco
format that executes on an emulation engine runmingthe
microprocessor and/or FPGA of a development platfor
Portability is enhanced via a USB flash-drive apgio to
loading the bytecode format onto the platform. féterance is
improved using emulation accelerators on an FPGA dékcribe
our SystemC-to-bytecode compiler, bytecode forraatulation
engine, and emulation accelerators. We illustrade of the
approach on a variety of examples, showing eastingoof a
single application across various platforms, andwshg
emulation speed on an FPGA that is comparable &ie8\C
execution on a PC.

1. Introduction

SystemC [26] represents a digital system descripipproach
based on C++. SystemC uses object-oriented featdir€s-+ to
enable descriptions that include features commoipravious
hardware description languages (HDLs), such astioreaf
components, instantiation and connection of compts® form
a circuit, and precisely-timed communication ancecexion
among concurrently-executing components, all usixgsting
C++ syntax. Regular C++ code can be included ircrifgons,
and SystemC also provides a thread library, thyspading
description of both the “software” (sequential mstions

coupled with parallel threads) and “hardware” (aitc parts of
an entire system in a single description language.

While a SystemC description can be executed on do0PC
simulation purposes before eventually synthesizitige
description to an ASIC, FPGA, or board-level cudiad
implementation, in-system SystemC emulation, wimerdie
executing description would interact with physidgabuts and
outputs (I/O), would also be useful. In-system atiah is
common for embedded processors. Though sloweralarstom
implementation, emulation enables early prototypirend
benefits from real 1/O rather than fabricated I#©simulation,
whose creation can difficult and time-consuming le/fstill not
matching the complexity and nuances of real I/Oukation can
be especially useful for SystemC, as illustratedrigure 1, due
to the fact that synthesis tools can be expensieenfared to
compilers), may only run on limited PC platformsdabe
challenging to install (especially on lower-end PQmnay be
unpredictable with respect to circuit size/speedoot runtime,
often require long runtimes (such as hours or daysy not
support particular target devices or platforms, a@eh only
synthesize the parts of the code written for sysitheThe
tradeoff is that the emulation engine must be preee a target
platform, but this is a one-time task, which maydome by the
platform’s developers or by platform users (suchteeching
assistants in an educational setting).

For education, where system execution speed mapaa
top priority, emulation may be entirely sufficiestich as when
describing a microprocessor system as is commonlye dn
computer architecture courses, where such desmptimay
never be intended for synthesis, but execution gphysical
platform is desired. In fact, for some systems €uucation

Figure 1: SystemC-on-a-Chip allows a designer to emulatée8yS descriptions on various supported developiplatfiorms. Emulation

enables early prototyping and interaction with paipherals and I/O, while reducing the need thramced compilation and synthesis.
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settings or otherwise), emulation may be fast ehdogserve as
a final implementation, obviating the need for s, akin to
virtual machines sometimes being sufficient for cering
processor bytecode such as Java bytecode. For Bxamp
“reaction timer” system may involve several inteiag
components interfacing with buttons, LEDs, and LCméth
emulation speed being fast enough to interact aiththese
items. In such cases, SystemC ultimately represanpsrallel

programming approach such as an approach using XOSI

threads, with the added benefit of supporting dirstyle spatial
connectivity, but the drawback of not (presentiyporting real-
time scheduling as in a real-time operating sysipproach.

We introduce an approach to SystemC emulation,amg
several parts. We created a compiler to converte8yS to a new
bytecode format that we developed, which possdgsESs-like
instructions  supplemented  with
instructions. We developed an emulation enginedhatrun on a
microprocessor on a development platform and thetges the
SystemC bytecode while interacting with 1/0 and ti@pal)
peripherals (frame buffers, UART, etc.). Becausetahility is
important in the approach, we introduce a USB fidste
method for programming, wherein the compiler-geteetdextual
bytecode file is copied to a USB flash-drive, whistthen read
by the development platform and just-in-time tratedl to the
machine-level bytecode used by the emulation endtoe the
common situation where the emulation engine is @mgnted on
(or with access to) an FPGA, we developed FPGAdasstom
emulation accelerators that substantially increageemulation
speed, enabling SystemC execution speeds compatable
middle-to-high-end PCs.

The rest of the paper is organized as follows. iGec?
describes related work. Section 3 describes thée®y3-on-a-
Chip emulation framework. Section 4 summarizes Brpnts
and results. Section 5 concludes.

2. Related Work

There has been previous work in capturing appbeatiand
circuits to increase portability. Andrews [1][2] clases on
creating operating system and middleware abstrastithat
extend across the hardware/software boundary, iagakd
designer to create applications for hybrid platfermith one
executable. Levine [14] describes hybrid architeguwith a
single, transformable executable. They argue thagx@cutable
described for a queue machine (converse of a stadhine)
makes runtime optimizations to a specialized FPGhri€
feasible. Moore [16] describes writing applicatiorthat
dynamically bind at runtime to reconfigurable haadevfor the
purposes of portability. Similar to Andrews [1][2he authors
develop hardware/software abstractions by writingdieware
layers that allow application software to utilizeconfigurable
DSP cores. Vuletic [31] proposes a system-levelalization
layer and a hardware-agnostic programming paradigrhide
platform details from the application designer dsad to more
portable circuit applications. Sirowy [23] showsit while many
manually created published circuits can be captiuredtemporal
language like C for portability benefits, there ati#l circuits that
require explicit spatial constructs, and that cargadily be
captured in temporal languages.

There has also been some research in the fieldirafware
emulation for verification and testing, includindnet BEE

new SystemC-specific

reconfigurable platform [6], and network-on-chip wdation
platforms [11]. Nakamura [18] describes a hardveaféiare
verification platform that uses shared register iwmmication
between a processor simulator and FPGA emulataninB¢3]
describes virtual in-circuit emulation of Systemi@uits for co-
verification and timing accurate prototyping. Risg21]
evaluates the emulation speeds of several SysternGelm
compared to standard HDL models.

Much research has involved virtualization [15][24§jth
several commercial products developed in respomsbe need
for portable virtual machines. VMware [30] and thygen source
product Xen [32] concentrate on developing virto@chines
that allow the end-user to run multiple operatingsteams
concurrently. The Java Virtual Machine [25] allowke
programmer to write operating system independeie cand
tools like DOS Box and console emulators allow tiser to run
legacy applications in modern operating systemanaciari [10]
extends virtualization to FPGA platforms, givingtapplication
designer a virtual view of an FPGA that is then gbglly
mapped via operating system functionality. Somekwoas
focused on accelerating Java bytecode through #ségm of
custom bytecode accelerators [12][19]. Virtualizatihas also
been used to abstract complex microcontroller efeam the
beginning embedded systems student [22].

There are a number of models of computation ancuitir
capture methods. Brown [4] shows that a paralleldehcof
computation requires machine primitive units, cohtonstructs,
communication mechanisms, and synchronization nmesimes.
Circuits are usually captured in a hardware degorigdanguage
(HDL), like SystemC [26], Verilog [28], or VHDL [29
although circuits can also be captured using sctiesnaOur
work focuses on thesynthesizable subset of SystemC [27],
involving the language constructs allowed in Sy&esynthesis
tools like Cadence [5] and Coware [7].

SystemC-on-a-Chip uses virtualization techniqueactuieve
portable SystemC applications on any developmeatfqsn that
can support an in-system emulation engine. Our apdity
approach doesn't require O/S support, and reliesexplicit
parallel constructs like signals and spatial cotinigg.

3. SystemC-on-a-Chip Platform

The SystemC-on-a-Chip platform consists of fivaqadncluding
a SystemC bytecode compiler, a new intermediateeB8ys
bytecode format, a portable USB flash drive dowdlogerface,
an emulation engine, and FPGA-based emulation eratiin
units.

3.1 SystemC Bytecode Compiler

We considered several options to achieve in-systennation of
SystemC descriptions. One approach was to porpthsicly
available SystemC libraries to each developmernifgta, and
add support for I/0 and peripheral interaction.San approach
would allow the same SystemC binary to run on amgpsrted
development platform, including standard PCs. Algbe
SystemC circuit would run natively on the developine
platform’s microprocessor. However, the SystemQaliies are
large and require OS support, thus limiting the bhamof
platforms that could support the SystemC-on-a-Glimework.
Furthermore, the SystemC libraries build a simafatiernel into
the circuit executable, increasing the size ofdkecutable and



Figure 2: SystemC Bytecode Compileta) The SystemC bytecode Figure 3: SystemC Bytecode Format. Each process is deddipe
compiler builds on PINAPA, a SystemC front-end f@oid uses a
custom SystemC bytecode backefi;Sample code generation

during the first phase of the SystemC bytecode leack
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making testing multiple SystemC descriptions quickhore
difficult.

Another option was to decompile the SystemC exédbeita
extract the circuit, and retarget that circuit far custom
emulation framework. The decompilation approagiasates the
circuit from the simulation kernel, allows testimyiltiple circuits
quickly, and potentially a smaller circuit execu&@ab A custom
emulation framework also allows smaller developr@atforms
to take advantage of in-system SystemC emulaticoweher,
decompilation is difficult, and solutions that ogter at the source
SystemC level seemed more feasible.

The option that we chose was to directly operatemfr
SystemC source code to produce bytecode, as shokiglre 2.
Our SystemC compiler builds upon tHINAPA tool [17].
Originally intended as a front-end for circuit faxation tools,
PINAPA provides agcc compiler front-end to SystemC circuits
that extracts a circuit's spatial and architectéeatures from the
SystemC description.

--sample System

a number of MIPS-like instructions, with additiomastructions
added for SystemC specifics, like reading sigreatsacting bit
ranges, etc.

circuit: signals processes
signals: signal or
signals signal
ProCesses : process or
Pprocesses process
signal : SGNAL NAME COLON NUMBER
process : PROCESS sensitivity_list code
sengitivity _list: NAME or
sengitivity_list NAME COMMA

code: instruction or

code instruction
instruction:

SRL or SLL or SLLV or SRLV

or MULT or MFLO or ADD Computation

or SUBor AND or ORor ADDI | mstructions

or ANDI or ORIl or XORI

or SUBI or LWor SW

or Jor JRor BEQor BNE .Controll

or BLE or BGT or BLT or BGE Instructions

or BIT or RANGE or READ SystemC-

or WRITE or CONCAT or WAIT specific
instructions

or END

The PINAPA front-end performs two operations on the

SystemC program. PINAPA uses a modified versiomhefgcc

compiler to extract behavioral information aboutlegrocess
and component in the circuit to generate the cpmeding

abstract syntax trees (AST), and uses a modifiexte8yC kernel
to extract the circuit's architectural featuregeliports, signals,
and spatial connectivity. Finally, PINAPIxks the architectural
description (ELAB) to each component's AST to forime

intermediate output.

We created a custom two-pass back-end to the PINAPA

compiler that accepts PINAPA's AST+ELAB output and
generates SystemC bytecode. The first pass traveest ELAB
component’'s AST. The first pass inlines auxiliagndtions,
flattens hierarchical descriptions, and generatégl SystemC
bytecode assuming an infinite amount of availatdgisters,
shown in Figure 2(b). The second pass performseati scan
register allocation [20] on the first pass outputcbnstrain the
intermediate code to a fixed number of registete dutput of
the register allocation pass is a readable textdilthe SystemC
description in SystemC bytecode.

3.2 SystemC Bytecode Format

The SystemC-on-a-Chip platform accepts a bytecaision of
the SystemC description, and not a traditional @y& binary,
nor the SystemC source code. A traditional Systenntry
includes much more information than is actuallyuiegd to



emulate the application, including constructs tppaurt object-
oriented C++ programming, and the simulation ker8gstemC
source code separates the circuit from the sinmudternel, but
requires compiler support on each developmentgstatf Similar
to Java bytecode and a Java Virtual Machine, asrrivgdiate
SystemC bytecode format separates the SystemC iptestr
behavior from the simulation kernel, doesn’t requar platform
compiler, and can run on any development platfdrat supports
the SystemC bytecode format.

The format of the SystemC bytecode is shown in feidd
The SystemC bytecode is a flattened version of dhiginal
SystemC description. The SystemC bytecode comfidéiens
the SystemC description to more efficiently emuthie SystemC
bytecode. A System@rcuit is composed of a list of signadsid
a list of processe#\ signal is a wire or set of wires that connects
independently running processasd is defined by a signal name
and bit width. Aprocess is a behavioral description of a circuit
entity. A processs defined by asensitivity list, a list of signals
the process is sensitive to, and a list of segakirstructions
which define the process’s behavior.

A process
instructions. The SystemC bytecode instructionsaagerivative
subset of the MIPS RISC register machine instractet [13],
shown in the bottom half of Figure 3. We also cdestd
targeting virtual stack or queue machines. The Jdirtual
Machine [25] executes bytecode instructions intenfde a stack
machine, and [14] executes bytecode instructiomsaf@ueue
machine. Proponents of stack and queue based bigdommats
argue that the stack/queue bytecode can moreegffigirun on a
virtual machine because the operands are implidderGstudies
[8] have shown that the advantages of stack mashanen’'t as
clear. The authors show the bytecode targetedrttsaamregister
machine can be competitive with stack machine caate]
usually results in more compact code. An additi@blantage is
that register bytecode is more readable, potentlbwing a
student to write bytecode in the absence of a 8)¥Stbytecode

compiler.
The SystemC bytecode format supports three diffexgres
of instructions: computation/memory instructionsontol

instructions, and SystemC-specific instructionse Thmputation
and control instructions are derived from the MIiRStruction

set [13]. We chose the RISC MIPS instruction setabse the
SystemC bytecode is easy to generate, because G-HRiS:d
emulator can be efficient [8], and because the cadsle
understandable to the beginning student. We alsosecha

representative subset of the MIPS instructions Waaild allow

specifying all circuits described in the synthebleasubset of
SystemC[27].

We added a number of SystemC-specific instructionthe
base MIPS instruction set, including tBET, RANGE, READ,
WRITE, and WAIT instructions. The BIT and RANGE
instructions extract either one bit or a rangeitf fsom a given
register. TheREAD and WRITE instructions allow a process to
read and write signals, much as the process cah doastore
values to memory. We added the SystemC-specifituictions
to more efficiently execute frequently occurring s&nC
primitives and function calls. Most of the Systersgxcific
instructions could have been implemented as a seguef the
basic computation instructions except for the WAiStruction.
The WAIT instruction allows a SystemC description to wait a

is captured as a sequence of sequential

Figure 4: USB interface. The user copies SystemC bytecode to
USB flash drive, plugs the drive into a platforndgrushes a
button—the platform then begins emulating the Sy&te
description.

Plug the USB flash dri\

Push the button to start 1

into  the SystemC emulation

platform

developme

fixed number of simulated time steps. The WAIT estaént is the
only supported feature that does not follow thetlsgsizable
SystemC guidelines, but allows designers to tesit tBystemC
applications with custom bytecode test benches. END
instruction instructs the emulation engine thatrecpss is done
executing.

3.3 USB Download Interface
Our SystemC-on-a-Chip platform supports USB prognarg
via a USB flash drive, rather than a traditionalrdweare
programmer or USB cable. A traditional hardwaregpaonmer
requires non-volatile memory and a removable clgpatly
limiting the number of supportable development fplas. An
alternative programming approach is to program wcdein-
system using a USB cable. While eliminating thechéor a
programming device, such an approach still requar&C every
time a designer wishes to load a new SystemC gxfari
Instead, we chose a USB flash drive programmingcsa,
illustrated in Figure 4. A user (such as a studeapies the
desired SystemC description (in bytecode formatp an USB
drive as a file, plugs the drive into the SystemtCaeChip
platform, and presses a button on the platform tlmatnloads
the program from the flash drive to the internali&tion engine.
The approach eliminates the need for non-volatéenory in the
development platform. The approach enables loadamgl
changing circuits by inserting and swapping flashives,
enabling more mobility and portability. The approaalso
matches current usage schemes for popular electdmvices,
allowing a beginning student to start programmirithwninimal
effort, and using a familiar paradigm. The costthat the
SystemC-on-a-Chip platform must contain an intelh@B flash
drive reader.



Figure 5: Basic Emulation Engine. The emulation engine ciagif a hybrid event/time driven kernel to allowaaiety of different
circuits to be implemented. Circuits can also tat#teantage of a range of standard peripherals,dimgduights, buttons, a UART, and
input and output memories.
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contains proper hooks to communicate with the stehd
peripheral and I/O set. We designed the bytecadealimachine
using standard techniques from [24] to increaseetfieiency of
execution.

The emulation engine supports platform I/O and pterial
access. The set of peripherals includes buttonfsl.EJART,
and input and output memories. We chose the pedghto be a
representative subset of peripherals that most |ojeent
platforms could support. For development platfomith a larger
set of peripherals, emulation designers could eamild extra
support. The basic emulation engine supports System
descriptions that implement the interface showFRigure 6. The
description writer does not have to follow the si@ml interface,
but the standard interface provides a convenienppmg
between description’s signals and the availablghperals.

3.4 Emulation Engine
The basic emulation engine supports SystemC byeeeoidten
or generated for the synthesizable subset of Sy&tenwe
currently do not support higher level features g$t8mcC like
transaction level and system level modeling becawseare
presently targeting SystemC descriptions that caentually
run natively on an FPGA. Figure 5(a) shows the itecture of
the basic emulation engine.

The basic emulation is driven by a processing toa¢ runs
a lean, event-driven simulation kernel [9]. Figb(b) shows the
pseudocode for the event-driven kernel. For eade 8tep, the
event-driven kernel processes a queue of readyrtevents. An
event is placed on the queue when a signal value is egddatd
that signal is on the sensitivity list of a proceSach time step
might consist of multipledelta time steps, in which a process . .
may execute multiple times during a time step. m&ach delta 3.5 Emulation Engine Accelerators
step, the event kernel updates the signal values péaces any For the common situation where the SystemC-on-g-Chi
new sensitive processes onto the event queue.ighalsvalues platform is implemented on an FPGA, we've developed
are located on the system busSignal Memory 1 and Signal

Memory 2. Processes and peripherals writeéStgnal Memory 1, Figure 6: SystemC-on-a-Chip Circuit Interface. The emulation
and read fron8gnal Memory 2. After each delta step, the event engine supports access to multiple peripheral$ydireg buttons,
kernel copies the contents &fjnal Memory 1 to Signal Memory LEDs, and memory.

2. The advantage of putting the signal memories onbile is

that peripherals have easy access to the signa¢sjaand gives Clock—] SystemC Circuit S\ LEDs

access to emulation accelerators. The disadvanisgéhat Reset | uart tx

multiple peripherals might try to access the sigmaimories at

the same time as the event kernel, blocking the, lausi Buttons, | > Input Mem Addr
degrading emulation efficiency. uart rx

The event-driven kernel calls a bytecode virtuathiae to Input Mem Stream

execute each event in the event queue. Bytecode virtual

machine supports the SystemC bytecode instruction set itbestr
in Section 3.2. Each process is allocated an ictn memory,
register file, and local data memory. The virtuaafmine also

Input
Mem Output Mem Addr

Date Output Mem Data



Figure 7: Emulation Accelerators. The emulation acceleratmsists of a multicycle MIPs-like datapath than execute one instruction
in about 3-4 cycles, almost 100X faster than exaguhe same instructions in the base emulator.
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emulation accelerators that substantially increthse SystemC
emulation speed. Figure 7(a) shows multiple emufati
accelerators connected to the basic emulation engdach
emulation accelerator runs in parallel to the otkewulation
accelerators and the main emulation processor. ré&igi{b)
shows the internals of one of the emulation acatdes. The
emulation accelerator consists of a small Systeny@cbde
processor and bus steering logic. The bytecodeepsor is a
modified multi-cycle MIPS datapath, with connecsoto a
register file and local data memory. The emulatmeelerator
can complete most instructions in 3-4 cycles, lith exception
of the READ instruction, which has a nondeterminiskecution
time since the accelerator must read data fromsyiséeem bus.
The emulation accelerator is configured as a magsterthe
system bus to allow the accelerator to read andewttie
emulation engine’s signal memories independent frtm
emulation processor, and as a slave to allow thelaion
processor to command the start of its execution.

The emulation accelerators are statically mappeexezute
one process during the course of a SystemC deseript
execution. The emulation processor maps processasitlation

N
mulation Accelerators connedb the®<
~
system bus, and have master access S e

- -

Bytecode Processor \

RISC

BUS Datapath

start,
load

S _—— -

emulation accelerator runs in parallel. The emaorfaticcelerators
do contend for the signal memories, but typical t&p<

behavioral descriptions only read/write signalsthed start and
end of their descriptions. The advantages of enamat
accelerators increase as the size of the SystenoCegses
increase since the emulation accelerator can exdwytecode
instructions orders of magnitude faster than th&cbamulation

engine can. There are tradeoffs though. Assuminguiti

emulation doesn’t require fast execution, the FR(E#a required
to implement emulation accelerators could be atextdor other

circuitry, including more advanced peripherals @0.1 Also,

smaller process descriptions may not benefit muobmf
emulation acceleration, or other SystemC execuiiors might

be perfectly acceptable in without acceleration

4. Experiments

We built two complete SystemC-on-a-Chip platformemd
implemented dozens of SystemC descriptions to detrate the
applicability of in-system SystemC emulation. Thstems we

Figure 8: SystemC-on-a-Chip Prototypes. Each system differeize,
processor, memory, and number of emulation acdels;ebut each
could run the same SystemC bytecode for a giveteBy3 description.

accelerators using a simple instruction-size pyicgtheme. The
advantage of the static priority approach is theulation

software is kept simple and doesn’t need to stogciion to
reconfigure the emulation accelerators. The disatdge is there
may be situations where dynamically swapping oucesses

onto the emulation accelerators might result inefasmulation Development | Main Bus Memory zrgrjlation
execution times. Also, since the size of the enmdat Platform Processor| Platform | |ocation acceleratol
accelerator’s instruction and data memories aredfixhe main
scheduling/mapping heuristic accounts for the Behitmemory  [Xilinx  Virtex4
sizes by only mapping processes to accelerators dhe MI403 FPGA | PowerPCl  PLB SRAM 2
guaranteed to fit. The main event-driven kernemisdified to
either simulate a process in software, or to make t Xilinx )
corresponding call to the correct emulation acegter Spartan3E Microblazd OPB BRAM 1

The number of emulation accelerators can substintia FPGA

increase the performance of the SystemC emulafitce sach



Figure 9: SystemC Experiments. (a) SystemC code for Imagge Bxtection. The code took only minutes to craatk compile before
being put on a Virtex4. (b) Edge Detection runnimga Virtex4. We connected the memory outputfraume buffer to see the results on
a VGA screen.

class EDGE_DETECTOR : public sc_modu
/Isignal declarations

EDGE_DETECTOR() {
SC_method(mainComJJ);
sensitive << dataReady;

SC_method(getPixel);
sensitive << clock.pos();

void getPixel(){
('j'étaReady.write(l);
void mainComp(){
inti, j;
forgi =0;i<3;i++f
or(j = 0;j < 3; j++){
sumX = sumX + mem.read()*GX[i][j]

}

(a) SystemC Snippet

built are summarized in Figure 8. One platform ugedVirtex4
MI403 FPGA development board, and the other us&patan
3E FPGA development board. On the Virtex4 ML403 RP®e

built the emulation engine on a PowerPC processdnsed the
PLB bus framework to access I/O and peripherals. tm

Spartan 3E FPGA, we built the emulation engine on a

Microblaze soft-core processor, using the OPB barméwork to
access peripherals and 1/0. The instruction mengtack, and
heap for the PowerPC based basic emulation engare wail
stored in SRAM. In contrast, the instruction mematack, and
heap for the Microblaze-based system were all émtat on-chip

BRAM. Due to limited BRAM resources, some SystemC

descriptions would not run on the Microblaze-bapéatform.
No SRAM existed on the Spartan 3E platform. Thetexd
platform could support two emulation acceleratomsd the
Spartan 3E platform could support one emulatiorelecator.
The emulation accelerators required about 30% ef ltgic
resources on each FPGA.
accelerator because the rest of the FPGA resoureesused to
build the Microblaze softcore processor. The Vidtekas a
hardcore PowerPC, allowing more room for
accelerators. We built both systems using XilinxkEB.2 and
Xilinx ISE 9.2. For most descriptions we testedthbSystemC-
on-a-Chip platforms systems could support the s&ysemC
circuit without altering the SystemC source code.

We implemented a number of different circuits ins@®nC,
including an edge detector, encryption/decryptiqpligations,
various state machines, and several smaller conitirz logic
components to exercise the entire SystemC bytesetdd-igure
9(a) shows a snippet of the SystemC source codéhéoedge
detection circuit. The edge detection circuit wagten with two
processes, one process to gather pixel data framirthut
memory, and one process to perform the edge detectnd
output to the output memory. We configured eachfqia to
use the output memory as a frame buffer, allowingual

Before N (b)

The Spartan 3E only fé on

emulation

After

inspection of the output on a VGA screen (Figurb)P(The

edge detection circuit could process a 128x128 émay

approximately 30 seconds on the base emulatiomer{giithout

acceleration support). While slow, in an early ptgping

scenario, or in a classroom setting, such timeshimige

acceptable. The edge detection circuit completedséme image
in about 0.3 seconds when one emulation accelerass

connected. The basic emulation engine requires redsdof

cycles to execute one bytecode instruction becafiaeslow bus
platform, instruction memory placement, and bytecadttual

machine abstraction. The emulation acceleratoriregjwonly a
few clock cycles per instruction, resulting in seef orders of
magnitude speedup. We also compared the edge idatestuit

running on the SystemC-on-a-Chip platforms to thene
SystemC circuit description running on an InteldzthsPC

running at 2 GHz. The SystemC edge detection ¢itoaok 0.5

seconds to complete the same 128x128 image. TherSgson-

a-Chip platform emulated the SystemC circuit fagtan the PC
simulated the SystemC description because the aaatet

executed each bytecode instruction in only a fewlesy In

contrast, the PC SystemC simulation requires térmsyaes to

execute an instruction because the PC simulatins trough a
more complex, templated, event-driven kernel thappsrts

SystemC'’s more advanced modeling features.

Figure 10 compares a variety of SystemC descriptimm a
base SystemC-on-a-Chip platform, on a base platfaith
emulation acceleration, and PC simulation. The régahows
results compared to the Virtex4 MI403 developmelatform.
The results for the Spartan 3E platform were coadglar On the
Spartan 3E development platform, the Microblazeesysclock
was half the speed of the PowerPC on the Virtex#,fétched
memory more efficiently since the Microblaze hadiedicated
bus to the BRAM instruction memory. The results whihat
SystemC-on-a-Chip executiotan be comparable to SystemC
simulation on a PC. Of course, the execution tinze



Figure 10:Performance of SystemC Emulator (normalize to the References

base emulator). In some examples, the emulatoragitkleration
was able to perform faster than the same SysteneGitciunning

onaPC.
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comparable only until the number of emulation a@ebrs are

exhausted. Also, the P€n simulate combinational logic more

efficiently than in-system SystemC emulation beeatlee PC
event kernel can skip large sections of simulaiee,talthough
skipping large amounts of time is dependent ontésé bench
specification. The SystemC-on-a-Chip platform does$ skip
time steps, instead relying on peripheral intecacfor testing. In
many cases though, especially during early tessiognarios,
high performance isn't critical and functional irgetion with

real peripherals and I/O is more important. Incakes, the basic

emulation engine executed the SystemC descriptieh30X
slower than the emulation engine with acceleratmn the
SystemC PC simulation. The basic emulation engiags the
advantage that many smaller development platforowgddcstill
support its software, enabling in-system SystemQIlation for
less capable systems, or for systems without FR&GSAurces.

5. Conclusions

SystemC allows description of a digital system gdiraditional
programming features as well as spatial connegtiféatures
common in hardware description languages. We destran
approach for in-system emulation of SystemC desorip. The
approach centers around a new SystemC bytecodeatfaiat
executes on an emulation engine running on a mMicoEISOr
and/or FPGA on a development board. We describddlla
SystemC-on-a-chip framework that includes a Systéyt€code
compiler, the SystemC bytecode format, emulatiogire®) and
emulation accelerators. We showed that a numbexafples
could be written once in SystemC, and then runtared on
several prototype platforms from a USB flash driweith

execution times comparable to SystemC executioa BG.
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