
 - 1 -

Portable SystemC-on-a-Chip

Abstract
SystemC allows description of a digital system using traditional
programming features as well as spatial connectivity features
common in hardware description languages. We describe an
approach for in-system emulation of circuits described in
SystemC. The approach involves a new SystemC bytecode
format that executes on an emulation engine running on the
microprocessor and/or FPGA of a development platform.
Portability is enhanced via a USB flash-drive approach to
loading the bytecode format onto the platform. Performance is
improved using emulation accelerators on an FPGA. We describe
our SystemC-to-bytecode compiler, bytecode format, emulation
engine, and emulation accelerators. We illustrate use of the
approach on a variety of examples, showing easy porting of a
single application across various platforms, and showing
emulation speed on an FPGA that is comparable to SystemC
execution on a PC.

1. Introduction
SystemC [26] represents a digital system description approach
based on C++. SystemC uses object-oriented features of C++ to
enable descriptions that include features common in previous
hardware description languages (HDLs), such as creation of
components, instantiation and connection of components to form
a circuit, and precisely-timed communication and execution
among concurrently-executing components, all using existing
C++ syntax. Regular C++ code can be included in descriptions,
and SystemC also provides a thread library, thus supporting
description of both the “software” (sequential instructions

coupled with parallel threads) and “hardware” (circuit) parts of
an entire system in a single description language.

While a SystemC description can be executed on a PC for
simulation purposes before eventually synthesizing the
description to an ASIC, FPGA, or board-level customized
implementation, in-system SystemC emulation, wherein the
executing description would interact with physical inputs and
outputs (I/O), would also be useful. In-system emulation is
common for embedded processors. Though slower than a custom
implementation, emulation enables early prototyping, and
benefits from real I/O rather than fabricated I/O in simulation,
whose creation can difficult and time-consuming while still not
matching the complexity and nuances of real I/O. Emulation can
be especially useful for SystemC, as illustrated in Figure 1, due
to the fact that synthesis tools can be expensive (compared to
compilers), may only run on limited PC platforms and be
challenging to install (especially on lower-end PCs), may be
unpredictable with respect to circuit size/speed or tool runtime,
often require long runtimes (such as hours or days), may not
support particular target devices or platforms, and can only
synthesize the parts of the code written for synthesis. The
tradeoff is that the emulation engine must be present on a target
platform, but this is a one-time task, which may be done by the
platform’s developers or by platform users (such as teaching
assistants in an educational setting).

For education, where system execution speed may not be a
top priority, emulation may be entirely sufficient, such as when
describing a microprocessor system as is commonly done in
computer architecture courses, where such descriptions may
never be intended for synthesis, but execution on a physical
platform is desired. In fact, for some systems (in education

Figure 1: SystemC-on-a-Chip allows a designer to emulate SystemC descriptions on various supported development platforms. Emulation
enables early prototyping and interaction with real peripherals and I/O, while reducing the need for advanced compilation and synthesis.

Increased design time and complexity

SystemC
Description

SystemC
bytecode
compiler

SystemC-on-a-Chip

Compilation/
Synthesis

Circuit
Emulator

Each development platforms
might require SystemC
rewrites or redesigns

Circuit
Emulator

Development Platform 2

Development Platform 1

Compilation/
Synthesis

Portable
SystemC
bytecode

Standard Tool Flow

bit or binary
files

 - 2 -

settings or otherwise), emulation may be fast enough to serve as
a final implementation, obviating the need for synthesis, akin to
virtual machines sometimes being sufficient for executing
processor bytecode such as Java bytecode. For example, a
“reaction timer” system may involve several interacting
components interfacing with buttons, LEDs, and LCDs, with
emulation speed being fast enough to interact with all these
items. In such cases, SystemC ultimately represents a parallel
programming approach such as an approach using POSIX
threads, with the added benefit of supporting circuit-style spatial
connectivity, but the drawback of not (presently) supporting real-
time scheduling as in a real-time operating system approach.

We introduce an approach to SystemC emulation, involving
several parts. We created a compiler to convert SystemC to a new
bytecode format that we developed, which possesses MIPS-like
instructions supplemented with new SystemC-specific
instructions. We developed an emulation engine that can run on a
microprocessor on a development platform and that executes the
SystemC bytecode while interacting with I/O and (optional)
peripherals (frame buffers, UART, etc.). Because portability is
important in the approach, we introduce a USB flash-drive
method for programming, wherein the compiler-generated textual
bytecode file is copied to a USB flash-drive, which is then read
by the development platform and just-in-time translated to the
machine-level bytecode used by the emulation engine. For the
common situation where the emulation engine is implemented on
(or with access to) an FPGA, we developed FPGA-based custom
emulation accelerators that substantially increase the emulation
speed, enabling SystemC execution speeds comparable to
middle-to-high-end PCs.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 describes the SystemC-on-a-
Chip emulation framework. Section 4 summarizes experiments
and results. Section 5 concludes.

2. Related Work
There has been previous work in capturing applications and
circuits to increase portability. Andrews [1][2] focuses on
creating operating system and middleware abstractions that
extend across the hardware/software boundary, enabling a
designer to create applications for hybrid platforms with one
executable. Levine [14] describes hybrid architectures with a
single, transformable executable. They argue that an executable
described for a queue machine (converse of a stack machine)
makes runtime optimizations to a specialized FPGA fabric
feasible. Moore [16] describes writing applications that
dynamically bind at runtime to reconfigurable hardware for the
purposes of portability. Similar to Andrews [1][2], the authors
develop hardware/software abstractions by writing middleware
layers that allow application software to utilize reconfigurable
DSP cores. Vuletic [31] proposes a system-level virtualization
layer and a hardware-agnostic programming paradigm to hide
platform details from the application designer and lead to more
portable circuit applications. Sirowy [23] shows that while many
manually created published circuits can be captured in a temporal
language like C for portability benefits, there are still circuits that
require explicit spatial constructs, and that can’t readily be
captured in temporal languages.

There has also been some research in the field of hardware
emulation for verification and testing, including the BEE

reconfigurable platform [6], and network-on-chip emulation
platforms [11]. Nakamura [18] describes a hardware/software
verification platform that uses shared register communication
between a processor simulator and FPGA emulator. Benini [3]
describes virtual in-circuit emulation of SystemC circuits for co-
verification and timing accurate prototyping. Rissa [21]
evaluates the emulation speeds of several SystemC models
compared to standard HDL models.

Much research has involved virtualization [15][24], with
several commercial products developed in response to the need
for portable virtual machines. VMware [30] and the open source
product Xen [32] concentrate on developing virtual machines
that allow the end-user to run multiple operating systems
concurrently. The Java Virtual Machine [25] allows the
programmer to write operating system independent code, and
tools like DOS Box and console emulators allow the user to run
legacy applications in modern operating systems. Fornaciari [10]
extends virtualization to FPGA platforms, giving the application
designer a virtual view of an FPGA that is then physically
mapped via operating system functionality. Some work has
focused on accelerating Java bytecode through the design of
custom bytecode accelerators [12][19]. Virtualization has also
been used to abstract complex microcontroller details from the
beginning embedded systems student [22].

There are a number of models of computation and circuit
capture methods. Brown [4] shows that a parallel model of
computation requires machine primitive units, control constructs,
communication mechanisms, and synchronization mechanisms.
Circuits are usually captured in a hardware description language
(HDL), like SystemC [26], Verilog [28], or VHDL [29],
although circuits can also be captured using schematics. Our
work focuses on the synthesizable subset of SystemC [27],
involving the language constructs allowed in SystemC synthesis
tools like Cadence [5] and Coware [7].

SystemC-on-a-Chip uses virtualization techniques to achieve
portable SystemC applications on any development platform that
can support an in-system emulation engine. Our portability
approach doesn’t require O/S support, and relies on explicit
parallel constructs like signals and spatial connectivity.

3. SystemC-on-a-Chip Platform
The SystemC-on-a-Chip platform consists of five parts, including
a SystemC bytecode compiler, a new intermediate SystemC
bytecode format, a portable USB flash drive download interface,
an emulation engine, and FPGA-based emulation acceleration
units.

3.1 SystemC Bytecode Compiler
We considered several options to achieve in-system emulation of
SystemC descriptions. One approach was to port the publicly
available SystemC libraries to each development platform, and
add support for I/O and peripheral interaction. Such an approach
would allow the same SystemC binary to run on any supported
development platform, including standard PCs. Also, the
SystemC circuit would run natively on the development
platform’s microprocessor. However, the SystemC libraries are
large and require OS support, thus limiting the number of
platforms that could support the SystemC-on-a-Chip framework.
Furthermore, the SystemC libraries build a simulation kernel into
the circuit executable, increasing the size of the executable and

 - 3 -

making testing multiple SystemC descriptions quickly more
difficult.

Another option was to decompile the SystemC executable,
extract the circuit, and retarget that circuit for a custom
emulation framework. The decompilation approach separates the
circuit from the simulation kernel, allows testing multiple circuits
quickly, and potentially a smaller circuit executable. A custom
emulation framework also allows smaller development platforms
to take advantage of in-system SystemC emulation. However,
decompilation is difficult, and solutions that operate at the source
SystemC level seemed more feasible.

The option that we chose was to directly operate from
SystemC source code to produce bytecode, as shown in Figure 2.
Our SystemC compiler builds upon the PINAPA tool [17].
Originally intended as a front-end for circuit verification tools,
PINAPA provides a gcc compiler front-end to SystemC circuits
that extracts a circuit’s spatial and architectural features from the
SystemC description.

The PINAPA front-end performs two operations on the
SystemC program. PINAPA uses a modified version of the gcc
compiler to extract behavioral information about each process
and component in the circuit to generate the corresponding
abstract syntax trees (AST), and uses a modified SystemC kernel
to extract the circuit’s architectural features, like ports, signals,
and spatial connectivity. Finally, PINAPA links the architectural
description (ELAB) to each component’s AST to form the
intermediate output.

We created a custom two-pass back-end to the PINAPA
compiler that accepts PINAPA’s AST+ELAB output and
generates SystemC bytecode. The first pass traverses each ELAB
component’s AST. The first pass inlines auxiliary functions,
flattens hierarchical descriptions, and generates initial SystemC
bytecode assuming an infinite amount of available registers,
shown in Figure 2(b). The second pass performs a linear scan
register allocation [20] on the first pass output to constrain the
intermediate code to a fixed number of registers. The output of
the register allocation pass is a readable text file of the SystemC
description in SystemC bytecode.

3.2 SystemC Bytecode Format
The SystemC-on-a-Chip platform accepts a bytecode version of
the SystemC description, and not a traditional SystemC binary,
nor the SystemC source code. A traditional SystemC binary
includes much more information than is actually required to

Figure 2: SystemC Bytecode Compiler: (a) The SystemC bytecode
compiler builds on PINAPA, a SystemC front-end tool, and uses a
custom SystemC bytecode backend; (b) Sample code generation

during the first phase of the SystemC bytecode back end.

Figure 3: SystemC Bytecode Format. Each process is described by
a number of MIPS-like instructions, with additional instructions
added for SystemC specifics, like reading signals, extracting bit

ranges, etc.

circuit: signals processes
signals: signal or
 signals signal
processes : process or
 processes process
signal : SIGNAL NAME COLON NUMBER
process : PROCESS sensitivity_list code
sensitivity_list: NAME or
 sensitivity_list NAME COMMA
code: instruction or
 code instruction

instruction:

SRL or SLL or SLLV or SRLV
or MULT or MFLO or ADD
or SUB or AND or OR or ADDI
or ANDI or ORI or XORI
or SUBI or LW or SW

or J or JR or BEQ or BNE
or BLE or BGT or BLT or BGE

or BIT or RANGE or READ
or WRITE or CONCAT or WAIT
or END

SystemC-
specific
instructions

Control
instructions

Computation
instructions

SystemC
 Description

Pinapa Front End

ELAB

AST

Link

Bytecode Back End

//sample SystemC
//code
 i = y + 5;
 z = x[i] * x[i-1];
//
//more code

--sample SystemC
--bytecode

ADDI $1 $2 5
LW $3 0($1)
SUBI $4 $1 1
LW $5 0($4)
MULT $6 $3 $5

Pinapa AST

SystemC
bytecode

Code
Generation 1

SystemC Bytecode Compiler

Expr

 i

Modify

 +

 y 5

Modify

Expr

 z *

Array Array

 x i x -

 i 1

Register
Allocation

(a)

(b)

 - 4 -

emulate the application, including constructs to support object-
oriented C++ programming, and the simulation kernel. SystemC
source code separates the circuit from the simulation kernel, but
requires compiler support on each development platform. Similar
to Java bytecode and a Java Virtual Machine, an intermediate
SystemC bytecode format separates the SystemC description
behavior from the simulation kernel, doesn’t require a platform
compiler, and can run on any development platform that supports
the SystemC bytecode format.

The format of the SystemC bytecode is shown in Figure 3.
The SystemC bytecode is a flattened version of the original
SystemC description. The SystemC bytecode compiler flattens
the SystemC description to more efficiently emulate the SystemC
bytecode. A SystemC circuit is composed of a list of signals and
a list of processes. A signal is a wire or set of wires that connects
independently running processes, and is defined by a signal name
and bit width. A process is a behavioral description of a circuit
entity. A process is defined by a sensitivity list, a list of signals
the process is sensitive to, and a list of sequential instructions
which define the process’s behavior.

A process is captured as a sequence of sequential
instructions. The SystemC bytecode instructions are a derivative
subset of the MIPS RISC register machine instruction set [13],
shown in the bottom half of Figure 3. We also considered
targeting virtual stack or queue machines. The Java Virtual
Machine [25] executes bytecode instructions intended for a stack
machine, and [14] executes bytecode instructions for a queue
machine. Proponents of stack and queue based bytecode formats
argue that the stack/queue bytecode can more efficiently run on a
virtual machine because the operands are implied. Other studies
[8] have shown that the advantages of stack machines aren’t as
clear. The authors show the bytecode targeted towards a register
machine can be competitive with stack machine code, and
usually results in more compact code. An additional advantage is
that register bytecode is more readable, potentially allowing a
student to write bytecode in the absence of a SystemC bytecode
compiler.

The SystemC bytecode format supports three different types
of instructions: computation/memory instructions, control
instructions, and SystemC-specific instructions. The computation
and control instructions are derived from the MIPS instruction
set [13]. We chose the RISC MIPS instruction set because the
SystemC bytecode is easy to generate, because a RISC-based
emulator can be efficient [8], and because the code is
understandable to the beginning student. We also chose a
representative subset of the MIPS instructions that would allow
specifying all circuits described in the synthesizable subset of
SystemC[27].

We added a number of SystemC-specific instructions to the
base MIPS instruction set, including the BIT, RANGE, READ,
WRITE, and WAIT instructions. The BIT and RANGE
instructions extract either one bit or a range of bits from a given
register. The READ and WRITE instructions allow a process to
read and write signals, much as the process can load or store
values to memory. We added the SystemC-specific instructions
to more efficiently execute frequently occurring SystemC
primitives and function calls. Most of the SystemC-specific
instructions could have been implemented as a sequence of the
basic computation instructions except for the WAIT instruction.
The WAIT instruction allows a SystemC description to wait a

fixed number of simulated time steps. The WAIT statement is the
only supported feature that does not follow the synthesizable
SystemC guidelines, but allows designers to test their SystemC
applications with custom bytecode test benches. The END
instruction instructs the emulation engine that a process is done
executing.

3.3 USB Download Interface
Our SystemC-on-a-Chip platform supports USB programming
via a USB flash drive, rather than a traditional hardware
programmer or USB cable. A traditional hardware programmer
requires non-volatile memory and a removable chip, greatly
limiting the number of supportable development platforms. An
alternative programming approach is to program a device in-
system using a USB cable. While eliminating the need for a
programming device, such an approach still requires a PC every
time a designer wishes to load a new SystemC description.

Instead, we chose a USB flash drive programming approach,
illustrated in Figure 4. A user (such as a student) copies the
desired SystemC description (in bytecode format) onto a USB
drive as a file, plugs the drive into the SystemC-on-a-Chip
platform, and presses a button on the platform that downloads
the program from the flash drive to the internal emulation engine.
The approach eliminates the need for non-volatile memory in the
development platform. The approach enables loading and
changing circuits by inserting and swapping flash drives,
enabling more mobility and portability. The approach also
matches current usage schemes for popular electronic devices,
allowing a beginning student to start programming with minimal
effort, and using a familiar paradigm. The cost is that the
SystemC-on-a-Chip platform must contain an internal USB flash
drive reader.

Figure 4: USB interface. The user copies SystemC bytecode to a
USB flash drive, plugs the drive into a platform and pushes a

button—the platform then begins emulating the SystemC
description.

Plug the USB flash drive
into the development
platform

Push the button to start the
SystemC emulation

 - 5 -

3.4 Emulation Engine
The basic emulation engine supports SystemC bytecode written
or generated for the synthesizable subset of SystemC. We
currently do not support higher level features of SystemC like
transaction level and system level modeling because we are
presently targeting SystemC descriptions that could eventually
run natively on an FPGA. Figure 5(a) shows the architecture of
the basic emulation engine.

The basic emulation is driven by a processing core that runs
a lean, event-driven simulation kernel [9]. Figure 5(b) shows the
pseudocode for the event-driven kernel. For each time step, the
event-driven kernel processes a queue of ready-to-run events. An
event is placed on the queue when a signal value is updated and
that signal is on the sensitivity list of a process. Each time step
might consist of multiple delta time steps, in which a process
may execute multiple times during a time step. After each delta
step, the event kernel updates the signal values, and places any
new sensitive processes onto the event queue. The signals values
are located on the system bus in Signal Memory 1 and Signal
Memory 2. Processes and peripherals write to Signal Memory 1,
and read from Signal Memory 2. After each delta step, the event
kernel copies the contents of Signal Memory 1 to Signal Memory
2. The advantage of putting the signal memories on the bus is
that peripherals have easy access to the signal values, and gives
access to emulation accelerators. The disadvantage is that
multiple peripherals might try to access the signal memories at
the same time as the event kernel, blocking the bus, and
degrading emulation efficiency.

The event-driven kernel calls a bytecode virtual machine to
execute each event in the event queue. The bytecode virtual
machine supports the SystemC bytecode instruction set described
in Section 3.2. Each process is allocated an instruction memory,
register file, and local data memory. The virtual machine also

contains proper hooks to communicate with the standard
peripheral and I/O set. We designed the bytecode virtual machine
using standard techniques from [24] to increase the efficiency of
execution.

The emulation engine supports platform I/O and peripheral
access. The set of peripherals includes buttons, LEDs, UART,
and input and output memories. We chose the peripherals to be a
representative subset of peripherals that most development
platforms could support. For development platforms with a larger
set of peripherals, emulation designers could easily add extra
support. The basic emulation engine supports SystemC
descriptions that implement the interface shown in Figure 6. The
description writer does not have to follow the standard interface,
but the standard interface provides a convenient mapping
between description’s signals and the available peripherals.

3.5 Emulation Engine Accelerators
For the common situation where the SystemC-on-a-Chip
platform is implemented on an FPGA, we’ve developed

Figure 5: Basic Emulation Engine. The emulation engine consists of a hybrid event/time driven kernel to allow a variety of different
circuits to be implemented. Circuits can also take advantage of a range of standard peripherals, including lights, buttons, a UART, and

input and output memories.

Figure 6: SystemC-on-a-Chip Circuit Interface. The emulation
engine supports access to multiple peripherals, including buttons,

LEDs, and memory.

SystemC Circuit Clock

Reset

Buttons

uart rx

Input
Memory
Data

LEDs

uart tx

Input Mem Addr

Output Mem Addr

Output Mem Data

Input Mem Stream

 UART

 LEDs

 Memory

 Output

 Memory

 Input

 Instruction

 Memory

 Signal

 Memory 1

 Signal

 Memory 2

 USB

 Interface

Standard
Peripherals
supported

Event Kernel

while(1){
 nextTimeStep = 0;
 while(!nextTimeStep){
 if(!queueEmpty()){
 done = 0
 while(!done){
 processEventQueue()
 }
 update();
 }
 else{
 nextTimeStep = 1
 }
 }
}

The main kernel processes events
for each time step, updates signal
values and event triggers, and
updates the time step

Main Event kernel
Emulation Engine

Bytecode VM

(a) (b)

Buttons

Processor

 - 6 -

emulation accelerators that substantially increase the SystemC
emulation speed. Figure 7(a) shows multiple emulation
accelerators connected to the basic emulation engine. Each
emulation accelerator runs in parallel to the other emulation
accelerators and the main emulation processor. Figure 7(b)
shows the internals of one of the emulation accelerators. The
emulation accelerator consists of a small SystemC bytecode
processor and bus steering logic. The bytecode processor is a
modified multi-cycle MIPS datapath, with connections to a
register file and local data memory. The emulation accelerator
can complete most instructions in 3-4 cycles, with the exception
of the READ instruction, which has a nondeterministic execution
time since the accelerator must read data from the system bus.
The emulation accelerator is configured as a master on the
system bus to allow the accelerator to read and write the
emulation engine’s signal memories independent from the
emulation processor, and as a slave to allow the emulation
processor to command the start of its execution.

The emulation accelerators are statically mapped to execute
one process during the course of a SystemC description
execution. The emulation processor maps processes to emulation
accelerators using a simple instruction-size priority scheme. The
advantage of the static priority approach is the emulation
software is kept simple and doesn’t need to stop execution to
reconfigure the emulation accelerators. The disadvantage is there
may be situations where dynamically swapping out processes
onto the emulation accelerators might result in faster emulation
execution times. Also, since the size of the emulation
accelerator’s instruction and data memories are fixed, the main
scheduling/mapping heuristic accounts for the limited memory
sizes by only mapping processes to accelerators that are
guaranteed to fit. The main event-driven kernel is modified to
either simulate a process in software, or to make the
corresponding call to the correct emulation accelerator.

The number of emulation accelerators can substantially
increase the performance of the SystemC emulation since each

emulation accelerator runs in parallel. The emulation accelerators
do contend for the signal memories, but typical SystemC
behavioral descriptions only read/write signals at the start and
end of their descriptions. The advantages of emulation
accelerators increase as the size of the SystemC processes
increase since the emulation accelerator can execute bytecode
instructions orders of magnitude faster than the basic emulation
engine can. There are tradeoffs though. Assuming circuit
emulation doesn’t require fast execution, the FPGA area required
to implement emulation accelerators could be allocated for other
circuitry, including more advanced peripherals or I/O. Also,
smaller process descriptions may not benefit much from
emulation acceleration, or other SystemC execution times might
be perfectly acceptable in without acceleration

4. Experiments
We built two complete SystemC-on-a-Chip platforms, and
implemented dozens of SystemC descriptions to demonstrate the
applicability of in-system SystemC emulation. The systems we

Figure 7: Emulation Accelerators. The emulation accelerator consists of a multicycle MIPs-like datapath than can execute one instruction
in about 3-4 cycles, almost 100X faster than executing the same instructions in the base emulator.

Figure 8: SystemC-on-a-Chip Prototypes. Each system differed in size,
processor, memory, and number of emulation accelerators, but each

could run the same SystemC bytecode for a given SystemC description.

…

Emulation Engine

Emulation
Acceleration

 Bytecode Processor

RISC
Datapath

Register File

Local Memory

Bus,
start,
load
logic

Emulation Accelerators connect to the
system bus, and have master access to all
the system peripherals

Processor

Peripherals

 Memory

Development
Platform

Main
Processor

Bus
Platform

Memory
Location

of
emulation
accelerators

Xilinx Virtex4
Ml403 FPGA

Xilinx
Spartan3E
FPGA

PowerPC

Microblaze

PLB

OPB

SRAM

BRAM

2

1

(a) (b)

Bytecode
Processor

Bytecode
Processor

Bytecode
Processor

 - 7 -

built are summarized in Figure 8. One platform used the Virtex4
Ml403 FPGA development board, and the other used a Spartan
3E FPGA development board. On the Virtex4 ML403 FPGA, we
built the emulation engine on a PowerPC processor and used the
PLB bus framework to access I/O and peripherals. On the
Spartan 3E FPGA, we built the emulation engine on a
Microblaze soft-core processor, using the OPB bus framework to
access peripherals and I/O. The instruction memory, stack, and
heap for the PowerPC based basic emulation engine were all
stored in SRAM. In contrast, the instruction memory, stack, and
heap for the Microblaze-based system were all located in on-chip
BRAM. Due to limited BRAM resources, some SystemC
descriptions would not run on the Microblaze-based platform.
No SRAM existed on the Spartan 3E platform. The Virtex4
platform could support two emulation accelerators, and the
Spartan 3E platform could support one emulation accelerator.
The emulation accelerators required about 30% of the logic
resources on each FPGA. The Spartan 3E only fit one
accelerator because the rest of the FPGA resources were used to
build the Microblaze softcore processor. The Virtex4 has a
hardcore PowerPC, allowing more room for emulation
accelerators. We built both systems using Xilinx EDK 9.2 and
Xilinx ISE 9.2. For most descriptions we tested, both SystemC-
on-a-Chip platforms systems could support the same SystemC
circuit without altering the SystemC source code.

We implemented a number of different circuits in SystemC,
including an edge detector, encryption/decryption applications,
various state machines, and several smaller combinational logic
components to exercise the entire SystemC bytecode set. Figure
9(a) shows a snippet of the SystemC source code for the edge
detection circuit. The edge detection circuit was written with two
processes, one process to gather pixel data from the input
memory, and one process to perform the edge detection and
output to the output memory. We configured each platform to
use the output memory as a frame buffer, allowing visual

inspection of the output on a VGA screen (Figure 9(b)). The
edge detection circuit could process a 128x128 image in
approximately 30 seconds on the base emulation engine (without
acceleration support). While slow, in an early prototyping
scenario, or in a classroom setting, such times might be
acceptable. The edge detection circuit completed the same image
in about 0.3 seconds when one emulation accelerator was
connected. The basic emulation engine requires hundreds of
cycles to execute one bytecode instruction because of a slow bus
platform, instruction memory placement, and bytecode virtual
machine abstraction. The emulation accelerator requires only a
few clock cycles per instruction, resulting in several of orders of
magnitude speedup. We also compared the edge detection circuit
running on the SystemC-on-a-Chip platforms to the same
SystemC circuit description running on an Intel-based PC
running at 2 GHz. The SystemC edge detection circuit took 0.5
seconds to complete the same 128x128 image. The SystemC-on-
a-Chip platform emulated the SystemC circuit faster than the PC
simulated the SystemC description because the accelerator
executed each bytecode instruction in only a few cycles. In
contrast, the PC SystemC simulation requires tens of cycles to
execute an instruction because the PC simulation runs through a
more complex, templated, event-driven kernel that supports
SystemC’s more advanced modeling features.

Figure 10 compares a variety of SystemC descriptions on a
base SystemC-on-a-Chip platform, on a base platform with
emulation acceleration, and PC simulation. The figure shows
results compared to the Virtex4 Ml403 development platform.
The results for the Spartan 3E platform were comparable. On the
Spartan 3E development platform, the Microblaze system clock
was half the speed of the PowerPC on the Virtex4, but fetched
memory more efficiently since the Microblaze had a dedicated
bus to the BRAM instruction memory. The results show that
SystemC-on-a-Chip execution can be comparable to SystemC
simulation on a PC. Of course, the execution times are

Figure 9: SystemC Experiments. (a) SystemC code for Image Edge Detection. The code took only minutes to create and compile before
being put on a Virtex4. (b) Edge Detection running on a Virtex4. We connected the memory output to a frame buffer to see the results on

a VGA screen.

class EDGE_DETECTOR : public sc_module {
//signal declarations
…
EDGE_DETECTOR() {
 SC_method(mainComp);
 sensitive << dataReady;

 SC_method(getPixel);
 sensitive << clock.pos();

void getPixel(){
 …
 dataReady.write(1);
}

void mainComp(){
 int i, j;
 for(i = 0; i < 3; i++){
 for(j = 0; j < 3; j++){
 sumX = sumX + mem.read()*GX[i][j]
 }
 }
 …

Before After SystemC Snippet

(a) (b)

 - 8 -

comparable only until the number of emulation accelerators are
exhausted. Also, the PC can simulate combinational logic more
efficiently than in-system SystemC emulation because the PC
event kernel can skip large sections of simulated time, although
skipping large amounts of time is dependent on the test bench
specification. The SystemC-on-a-Chip platform does not skip
time steps, instead relying on peripheral interaction for testing. In
many cases though, especially during early testing scenarios,
high performance isn’t critical and functional interaction with
real peripherals and I/O is more important. In all cases, the basic
emulation engine executed the SystemC descriptions ~100X
slower than the emulation engine with acceleration or the
SystemC PC simulation. The basic emulation engine has the
advantage that many smaller development platforms could still
support its software, enabling in-system SystemC emulation for
less capable systems, or for systems without FPGA resources.

5. Conclusions
SystemC allows description of a digital system using traditional
programming features as well as spatial connectivity features
common in hardware description languages. We described an
approach for in-system emulation of SystemC descriptions. The
approach centers around a new SystemC bytecode format that
executes on an emulation engine running on a microprocessor
and/or FPGA on a development board. We described a full
SystemC-on-a-chip framework that includes a SystemC bytecode
compiler, the SystemC bytecode format, emulation engine, and
emulation accelerators. We showed that a number of examples
could be written once in SystemC, and then run unaltered on
several prototype platforms from a USB flash drive, with
execution times comparable to SystemC execution on a PC.

References
[1] ANDERSON, E., AGRON, J., PECK, W., STEVENS, J., BAIJOT, F.,

KOMP, E., SASS, R., AND ANDREWS, D. 2006. Enabling a
Uniform Programming Model Across the
Software/Hardware Boundary. In Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (April 24 - 26, 2006). FCCM

[2] ANDREWS, D., SASS, R., ANDERSON, E., AGRON, J., PECK, W.,
STEVENS, J., BAIJOT, F., AND KOMP, E. 2008. Achieving
programming model abstractions for reconfigurable
computing. IEEE Trans. Very Large Scale Integr. Syst. 16,
1 (Jan. 2008), 34-44.

[3] BENINI, L., BRUNI, D., DRAGO, N., FUMMI , F., AND PONCINO,
M. "Virtual in-circuit emulation for timing accurate system
prototyping," in Proc. IEEE Int. Conf. ASIC/- SoC, 2002

[4] BROWN, J.C Parallel Architectures for Computer Systems.
IEEE Computer vol 37, no. 5. pp83-87 1989.

[5] CADENCE DESIGN SYSTEMS.
http://www.cadence.com/us/pages/default.aspx

[6] CHANG, C., KUUSILINNA, K., RICHARDS, B., AND BRODERSEN,
R. W. 2003. Implementation of BEE: a real-time large-scale
hardware emulation engine. In Proceedings of the 2003
ACM/SIGDA Eleventh international Symposium on Field
Programmable Gate Arrays (Monterey, California, USA,
February 23 - 25, 2003). FPGA '03. ACM, New York, NY,
91-99

[7] COWARE. http://www.coware.com/
[8] DAVIS, B., BEATTY, A., CASEY, K., GREGG, D., AND

WALDRON, J. 2003. The case for virtual register machines.
In Proceedings of the 2003 Workshop on interpreters,
Virtual Machines and Emulators (San Diego, California,
June 12 - 12, 2003). IVME '03. ACM, New York, NY, 41-
49

[9] FRENCH, R. S., LAM , M. S., LEVITT, J. R., AND OLUKOTUN, K.
1995. A general method for compiling event-driven
simulations. In Proceedings of the 32nd ACM/IEEE
Conference on Design Automation (San Francisco,
California, United States, June 12 - 16, 1995). DAC '95.
ACM, New York, NY, 151-156

[10] FORNACIARI, W. AND PIURI, V. Virtual FPGAs: Some Steps
Behind the Physical Barriers. In Parallel and Distributed
Processing (IPPS/SPDP'98 Workshop Proceedings), LNCS.
1998.

[11] GENKO, N., ATIENZA, D., MICHELI, G. D., MENDIAS, J. M.,
HERMIDA, R., AND CATTHOOR, F. 2005. A Complete
Network-On-Chip Emulation Framework. In Proceedings of
the Conference on Design, Automation and Test in Europe -
Volume 1 (March 07 - 11, 2005). Design, Automation, and
Test in Europe. IEEE Computer Society, Washington, DC,
246-251

[12] GRUIAN, F. AND WESTMIJZE, M. 2007. BlueJEP: a flexible
and high-performance Java embedded processor. In
Proceedings of the 5th international Workshop on Java
Technologies For Real-Time and Embedded Systems
(Vienna, Austria, September 26 - 28, 2007). JTRES '07, vol.
231. ACM, New York, NY, 222-229

[13] HENNESSY, J. AND PATTERSON, D. Computer Architecture –
A Quantitative Approach. Morgan Kaufman Publishers. 3rd
edition. 1996

[14] LEVINE, B. A. AND SCHMIT, H. H. 2003. Efficient
Application Representation for HASTE: Hybrid
Architectures with a Single, Transformable Executable. In
Proceedings of the 11th Annual IEEE Symposium on Field-

Figure 10:.Performance of SystemC Emulator (normalize to the
base emulator). In some examples, the emulator with acceleration
was able to perform faster than the same SystemC circuit running

on a PC.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

E
dg

e
D

et
ec

tio
n

P
ip

el
in

ed
 B

in
ar

y
T

re
e

E
nc

ry
pt

io
n/

D
ec

ry
p

tio
n

Li
gh

ts
ho

w
 S

ta
te

M
ac

hi
ne

C
om

bi
na

tio
na

l
Lo

gi
c

Base Emulator

Base Emulator + Acceleration

PC Simulation

1 1 1 1 1 0.1

 - 9 -

Programmable Custom Computing Machines (April 09 -
11, 2003). FCCM. IEEE Computer Society, Washington,
DC, 101

[15] LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual
machine for sensor networks. SIGOPS Oper. Syst. Rev. 36,
5 (Dec. 2002), 85-95

[16] MOORE, N., CONTI, A., LEESER, M., AND KING, L. S. 2007.
Writing Portable Applications that Dynamically Bind at
Run Time to Reconfigurable Hardware. In Proceedings of
the 15th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (April 23 - 25, 2007). FCCM.
IEEE Computer Society, Washington, DC, 229-238

[17] MOY, M., MARANINCHI, F., AND MAILLET -CONTOZ, L. 2005.
Pinapa: an extraction tool for SystemC descriptions of
systems-on-a-chip. In Proceedings of the 5th ACM
international Conference on Embedded Software (Jersey
City, NJ, USA, September 18 - 22, 2005). EMSOFT '05.
ACM, New York, NY, 317-324

[18] NAKAMURA , Y., HOSOKAWA, K., KURODA, I., YOSHIKAWA,
K., AND YOSHIMURA, T. 2004. A fast hardware/software co-
verification method for system-on-a-chip by using a C/C++
simulator and FPGA emulator with shared register
communication. In Proceedings of the 41st Annual
Conference on Design Automation (San Diego, CA, USA,
June 07 - 11, 2004). DAC '04

[19] PARNIS, J. AND LEE, G. 2004. Exploiting FPGA concurrency
to enhance JVM performance. In Proceedings of the 27th
Australasian Conference on Computer Science - Volume 26
(Dunedin, New Zealand). Estivill-Castro, Ed. ACSC, vol.
56. Australian Computer Society, Darlinghurst, Australia,
223-232

[20] POLETTO, M. AND SARKAR, V. 1999. Linear scan register
allocation. ACM Trans. Program. Lang. Syst. 21, 5 (Sep.
1999), 895-913.

[21] RISSA, T., DONLIN, A., AND LUK, W. 2005. Evaluation of
SystemC Modelling of Reconfigurable Embedded Systems.
In Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 3 (March 07 - 11, 2005).
Design, Automation, and Test in Europe. IEEE Computer
Society, Washington, DC, 253-258

[22] SIROWY, S. SHELDON, D., GIVARGIS, T. AND VAHID . F.
Virtual Microcontrollers. Workshop on Embedded System
Education. June 2009.

[23] SIROWY, S., STITT, G., AND VAHID , F. 2008. C is for circuits:
capturing FPGA circuits as sequential code for portability.
In Proceedings of the 16th international ACM/SIGDA
Symposium on Field Programmable Gate Arrays
(Monterey, California, USA, February 24 - 26, 2008).
FPGA '08

[24] SMITH, J. AND NAIR, R. V IRTUAL MACHINES: Versatile
Platforms for Systems and Processes. Morgan-Kaufman
Publishers. 2005

[25] STARK, R., SCHMID, J, AND BORGER, E. Java and the Virtual
Machine- Definition, Verification, and Validation. 2001

[26] SYSTEMC. http://www.systemc.org
[27] SYSTEMC SYNTHESIZABLE SUBSET. http://www.systemc.org
[28] VERILOG SPECIFICATION.

http://www.verilog.com/VerilogBNF.html
[29] VHDL SPECIFICATION STANDARD. http://www.vhdl.org/
[30] VMWARE. http://www.vmware.com
[31] VULETIC, M., POZZI, L., AND IENNE, P. 2005. Seamless

Hardware-Software Integration in Reconfigurable
Computing Systems. IEEE Des. Test 22, 2 (Mar. 2005),
102-113

[32] XEN. http://www.xen.org

