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Portable SystemC-on-a-Chip

Abstract 
SystemC allows description of a digital system using traditional 
programming features as well as spatial connectivity features 
common in hardware description languages. We describe an 
approach for in-system emulation of circuits described in 
SystemC. The approach involves a new SystemC bytecode 
format that executes on an emulation engine running on the 
microprocessor and/or FPGA of a development platform. 
Portability is enhanced via a USB flash-drive approach to 
loading the bytecode format onto the platform.  Performance is 
improved using emulation accelerators on an FPGA. We describe 
our SystemC-to-bytecode compiler, bytecode format, emulation 
engine, and emulation accelerators. We illustrate use of the 
approach on a variety of examples, showing easy porting of a 
single application across various platforms, and showing 
emulation speed on an FPGA that is comparable to SystemC 
execution on a PC.  

1. Introduction  
SystemC [26] represents a digital system description approach 
based on C++. SystemC uses object-oriented features of C++ to 
enable descriptions that include features common in previous 
hardware description languages (HDLs), such as creation of 
components, instantiation and connection of components to form 
a circuit, and precisely-timed communication and execution 
among concurrently-executing components, all using existing 
C++ syntax. Regular C++ code can be included in descriptions, 
and SystemC also provides a thread library, thus supporting 
description of both the “software” (sequential instructions 

coupled with parallel threads) and “hardware” (circuit) parts of 
an entire system in a single description language.  

While a SystemC description can be executed on a PC for 
simulation purposes before eventually synthesizing the 
description to an ASIC, FPGA, or board-level customized 
implementation, in-system SystemC emulation, wherein the 
executing description would interact with physical inputs and 
outputs (I/O), would also be useful. In-system emulation is 
common for embedded processors. Though slower than a custom 
implementation, emulation enables early prototyping, and 
benefits from real I/O rather than fabricated I/O in simulation, 
whose creation can difficult and time-consuming while still not 
matching the complexity and nuances of real I/O. Emulation can 
be especially useful for SystemC, as illustrated in Figure 1, due 
to the fact that synthesis tools can be expensive (compared to 
compilers), may only run on limited PC platforms and be 
challenging to install (especially on lower-end PCs), may be 
unpredictable with respect to circuit size/speed or tool runtime, 
often require long runtimes (such as hours or days), may not 
support particular target devices or platforms, and can only 
synthesize the parts of the code written for synthesis. The 
tradeoff is that the emulation engine must be present on a target 
platform, but this is a one-time task, which may be done by the 
platform’s developers or by platform users (such as teaching 
assistants in an educational setting).    

For education, where system execution speed may not be a 
top priority, emulation may be entirely sufficient, such as when 
describing a microprocessor system as is commonly done in 
computer architecture courses, where such descriptions may 
never be intended for synthesis, but execution on a physical 
platform is desired. In fact, for some systems (in education 

Figure 1: SystemC-on-a-Chip allows a designer to emulate SystemC descriptions on various supported development platforms. Emulation 
enables early prototyping and interaction with real peripherals and I/O, while reducing the need for advanced compilation and synthesis.  
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settings or otherwise), emulation may be fast enough to serve as 
a final implementation, obviating the need for synthesis, akin to 
virtual machines sometimes being sufficient for executing 
processor bytecode such as Java bytecode. For example, a 
“reaction timer” system may involve several interacting 
components interfacing with buttons, LEDs, and LCDs, with 
emulation speed being fast enough to interact with all these 
items. In such cases, SystemC ultimately represents a parallel 
programming approach such as an approach using POSIX 
threads, with the added benefit of supporting circuit-style spatial 
connectivity, but the drawback of not (presently) supporting real-
time scheduling as in a real-time operating system approach.  

We introduce an approach to SystemC emulation, involving 
several parts. We created a compiler to convert SystemC to a new 
bytecode format that we developed, which possesses MIPS-like 
instructions supplemented with new SystemC-specific 
instructions. We developed an emulation engine that can run on a 
microprocessor on a development platform and that executes the 
SystemC bytecode while interacting with I/O and (optional) 
peripherals (frame buffers, UART, etc.). Because portability is 
important in the approach, we introduce a USB flash-drive 
method for programming, wherein the compiler-generated textual 
bytecode file is copied to a USB flash-drive, which is then read 
by the development platform and just-in-time translated to the 
machine-level bytecode used by the emulation engine. For the 
common situation where the emulation engine is implemented on 
(or with access to) an FPGA, we developed FPGA-based custom 
emulation accelerators that substantially increase the emulation 
speed, enabling SystemC execution speeds comparable to 
middle-to-high-end PCs.   

The rest of the paper is organized as follows. Section 2 
describes related work. Section 3 describes the SystemC-on-a-
Chip emulation framework. Section 4 summarizes experiments 
and results. Section 5 concludes.  

2. Related Work 
There has been previous work in capturing applications and 
circuits to increase portability. Andrews [1][2] focuses on 
creating operating system and middleware abstractions that 
extend across the hardware/software boundary, enabling a 
designer to create applications for hybrid platforms with one 
executable. Levine [14] describes hybrid architectures with a 
single, transformable executable. They argue that an executable 
described for a queue machine (converse of a stack machine) 
makes runtime optimizations to a specialized FPGA fabric 
feasible. Moore [16] describes writing applications that 
dynamically bind at runtime to reconfigurable hardware for the 
purposes of portability. Similar to Andrews [1][2], the authors 
develop hardware/software abstractions by writing middleware 
layers that allow application software to utilize reconfigurable 
DSP cores.  Vuletic [31] proposes a system-level virtualization 
layer and a hardware-agnostic programming paradigm to hide 
platform details from the application designer and lead to more 
portable circuit applications.  Sirowy [23] shows that while many 
manually created published circuits can be captured in a temporal 
language like C for portability benefits, there are still circuits that 
require explicit spatial constructs, and that can’t readily be 
captured in temporal languages.  

There has also been some research in the field of hardware 
emulation for verification and testing, including the BEE 

reconfigurable platform [6], and network-on-chip emulation 
platforms [11]. Nakamura [18] describes a hardware/software 
verification platform that uses shared register communication 
between a processor simulator and FPGA emulator. Benini [3] 
describes virtual in-circuit emulation of SystemC circuits for co-
verification and timing accurate prototyping.  Rissa [21] 
evaluates the emulation speeds of several SystemC models 
compared to standard HDL models. 

Much research has involved virtualization [15][24], with 
several commercial products developed in response to the need 
for portable virtual machines. VMware [30] and the open source 
product Xen [32] concentrate on developing virtual machines 
that allow the end-user to run multiple operating systems 
concurrently. The Java Virtual Machine [25] allows the 
programmer to write operating system independent code, and 
tools like DOS Box and console emulators allow the user to run 
legacy applications in modern operating systems.  Fornaciari [10] 
extends virtualization to FPGA platforms, giving the application 
designer a virtual view of an FPGA that is then physically 
mapped via operating system functionality.  Some work has 
focused on accelerating Java bytecode through the design of 
custom bytecode accelerators [12][19]. Virtualization has also 
been used to abstract complex microcontroller details from the 
beginning embedded systems student [22].  

There are a number of models of computation and circuit 
capture methods. Brown [4] shows that a parallel model of 
computation requires machine primitive units, control constructs, 
communication mechanisms, and synchronization mechanisms.  
Circuits are usually captured in a hardware description language 
(HDL), like SystemC [26], Verilog [28], or VHDL [29], 
although circuits can also be captured using schematics. Our 
work focuses on the synthesizable subset of SystemC [27], 
involving the language constructs allowed in SystemC synthesis 
tools like Cadence [5] and Coware [7].   

SystemC-on-a-Chip uses virtualization techniques to achieve 
portable SystemC applications on any development platform that 
can support an in-system emulation engine. Our portability 
approach doesn’t require O/S support, and relies on explicit 
parallel constructs like signals and spatial connectivity.  

3. SystemC-on-a-Chip Platform 
The SystemC-on-a-Chip platform consists of five parts, including 
a SystemC bytecode compiler, a new intermediate SystemC 
bytecode format, a portable USB flash drive download interface, 
an emulation engine, and FPGA-based emulation acceleration 
units.  

3.1 SystemC Bytecode Compiler 
We considered several options to achieve in-system emulation of 
SystemC descriptions. One approach was to port the publicly 
available SystemC libraries to each development platform, and 
add support for I/O and peripheral interaction. Such an approach 
would allow the same SystemC binary to run on any supported 
development platform, including standard PCs. Also, the 
SystemC circuit would run natively on the development 
platform’s microprocessor. However, the SystemC libraries are 
large and require OS support, thus limiting the number of 
platforms that could support the SystemC-on-a-Chip framework.  
Furthermore, the SystemC libraries build a simulation kernel into 
the circuit executable, increasing the size of the executable and 
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making testing multiple SystemC descriptions quickly more 
difficult.  

Another option was to decompile the SystemC executable, 
extract the circuit, and retarget that circuit for a custom 
emulation framework.  The decompilation approach separates the 
circuit from the simulation kernel, allows testing multiple circuits 
quickly, and potentially a smaller circuit executable.  A custom 
emulation framework also allows smaller development platforms 
to take advantage of in-system SystemC emulation. However, 
decompilation is difficult, and solutions that operate at the source 
SystemC level seemed more feasible.  

The option that we chose was to directly operate from 
SystemC source code to produce bytecode, as shown in Figure 2. 
Our SystemC compiler builds upon the PINAPA tool [17]. 
Originally intended as a front-end for circuit verification tools, 
PINAPA provides a gcc compiler front-end to SystemC circuits 
that extracts a circuit’s spatial and architectural features from the 
SystemC description.  

The PINAPA front-end performs two operations on the 
SystemC program. PINAPA uses a modified version of the gcc 
compiler to extract behavioral information about each process 
and component in the circuit to generate the corresponding 
abstract syntax trees (AST), and uses a modified SystemC kernel 
to extract the circuit’s architectural features, like ports, signals, 
and spatial connectivity. Finally, PINAPA links the architectural 
description (ELAB) to each component’s AST to form the 
intermediate output.  

We created a custom two-pass back-end to the PINAPA 
compiler that accepts PINAPA’s AST+ELAB output and 
generates SystemC bytecode. The first pass traverses each ELAB 
component’s AST. The first pass inlines auxiliary functions, 
flattens hierarchical descriptions, and generates initial SystemC 
bytecode assuming an infinite amount of available registers, 
shown in Figure 2(b). The second pass performs a linear scan 
register allocation [20] on the first pass output to constrain the 
intermediate code to a fixed number of registers. The output of 
the register allocation pass is a readable text file of the SystemC 
description in SystemC bytecode. 

3.2 SystemC Bytecode Format 
The SystemC-on-a-Chip platform accepts a bytecode version of 
the SystemC description, and not a traditional SystemC binary, 
nor the SystemC source code. A traditional SystemC binary 
includes much more information than is actually required to 

Figure 2: SystemC Bytecode Compiler:  (a) The SystemC bytecode 
compiler builds on PINAPA, a SystemC front-end tool, and uses a 
custom SystemC bytecode backend; (b) Sample code generation 

during the first phase of the SystemC bytecode back end. 

 

 

Figure 3: SystemC Bytecode Format.  Each process is described by 
a number of MIPS-like instructions, with additional instructions 
added for SystemC specifics, like reading signals, extracting bit 

ranges, etc.  

 

 

circuit: signals processes 
signals: signal or 
             signals signal 
processes : process or 
                  processes process 
signal : SIGNAL NAME COLON NUMBER 
process : PROCESS sensitivity_list code 
sensitivity_list: NAME or 
                         sensitivity_list  NAME COMMA 
code: instruction  or  
          code instruction 

instruction: 

SRL  or SLL  or  SLLV or SRLV  
or MULT  or MFLO or ADD  
or SUB or AND or OR or ADDI  
or ANDI or ORI or XORI  
or SUBI or LW or SW      
 
or   J or JR or BEQ or BNE  
or BLE or BGT or BLT or BGE  
 
or BIT or RANGE or READ 
or WRITE or CONCAT or WAIT 
or END 
 

SystemC- 
specific 
instructions 

Control 
instructions 

Computation 
instructions 

SystemC 
 Description 

Pinapa Front End 

ELAB 

AST 

Link 

Bytecode Back End 

//sample SystemC 
//code 
 i = y + 5; 
 z = x[i] * x[i-1]; 
// 
//more code 

--sample SystemC  
--bytecode 

ADDI $1 $2 5 
LW $3 0($1) 
SUBI $4 $1 1 
LW $5 0($4) 
MULT $6 $3 $5 
 

Pinapa AST 

SystemC 
bytecode 

Code 
Generation 1 

SystemC Bytecode Compiler 

Expr 

  i 

Modify 

 + 

 y  5 

Modify 

Expr 

 z  *  

Array Array 

 x   i  x  - 

  i   1 

 

 

 

Register 
Allocation 

(a) 

(b) 



 - 4 - 

emulate the application, including constructs to support object-
oriented C++ programming, and the simulation kernel. SystemC 
source code separates the circuit from the simulation kernel, but 
requires compiler support on each development platform. Similar 
to Java bytecode and a Java Virtual Machine, an intermediate 
SystemC bytecode format separates the SystemC description 
behavior from the simulation kernel, doesn’t require a platform 
compiler, and can run on any development platform that supports 
the SystemC bytecode format.  

The format of the SystemC bytecode is shown in Figure 3. 
The SystemC bytecode is a flattened version of the original 
SystemC description. The SystemC bytecode compiler flattens 
the SystemC description to more efficiently emulate the SystemC 
bytecode. A SystemC circuit is composed of a list of signals and 
a list of processes. A signal is a wire or set of wires that connects 
independently running processes, and is defined by a signal name 
and bit width. A process is a behavioral description of a circuit 
entity. A process is defined by a sensitivity list, a list of signals 
the process is sensitive to, and a list of sequential instructions 
which define the process’s behavior.   

A process is captured as a sequence of sequential 
instructions. The SystemC bytecode instructions are a derivative 
subset of the MIPS RISC register machine instruction set [13], 
shown in the bottom half of Figure 3. We also considered 
targeting virtual stack or queue machines. The Java Virtual 
Machine [25] executes bytecode instructions intended for a stack 
machine, and [14] executes bytecode instructions for a queue 
machine. Proponents of stack and queue based bytecode formats 
argue that the stack/queue bytecode can more efficiently run on a 
virtual machine because the operands are implied. Other studies 
[8] have shown that the advantages of stack machines aren’t as 
clear.  The authors show the bytecode targeted towards a register 
machine can be competitive with stack machine code, and 
usually results in more compact code. An additional advantage is 
that register bytecode is more readable, potentially allowing a 
student to write bytecode in the absence of a SystemC bytecode 
compiler.  

The SystemC bytecode format supports three different types 
of instructions: computation/memory instructions, control 
instructions, and SystemC-specific instructions. The computation 
and control instructions are derived from the MIPS instruction 
set [13]. We chose the RISC MIPS instruction set because the 
SystemC bytecode is easy to generate, because a RISC-based 
emulator can be efficient [8], and because the code is 
understandable to the beginning student. We also chose a 
representative subset of the MIPS instructions that would allow 
specifying all circuits described in the synthesizable subset of 
SystemC[27].  

We added a number of SystemC-specific instructions to the 
base MIPS instruction set, including the BIT, RANGE, READ, 
WRITE, and WAIT instructions. The BIT and RANGE 
instructions extract either one bit or a range of bits from a given 
register. The READ and WRITE instructions allow a process to 
read and write signals, much as the process can load or store 
values to memory. We added the SystemC-specific instructions 
to more efficiently execute frequently occurring SystemC 
primitives and function calls. Most of the SystemC-specific 
instructions could have been implemented as a sequence of the 
basic computation instructions except for the WAIT instruction. 
The WAIT instruction allows a SystemC description to wait a 

fixed number of simulated time steps. The WAIT statement is the 
only supported feature that does not follow the synthesizable 
SystemC guidelines, but allows designers to test their SystemC 
applications with custom bytecode test benches. The END 
instruction instructs the emulation engine that a process is done 
executing.    

3.3 USB Download Interface 
Our SystemC-on-a-Chip platform supports USB programming 
via a USB flash drive, rather than a traditional hardware 
programmer or USB cable. A traditional hardware programmer 
requires non-volatile memory and a removable chip, greatly 
limiting the number of supportable development platforms. An 
alternative programming approach is to program a device in-
system using a USB cable.  While eliminating the need for a 
programming device, such an approach still requires a PC every 
time a designer wishes to load a new SystemC description. 

Instead, we chose a USB flash drive programming approach, 
illustrated in Figure 4. A user (such as a student) copies the 
desired SystemC description (in bytecode format) onto a USB 
drive as a file, plugs the drive into the SystemC-on-a-Chip 
platform, and presses a button on the platform that downloads 
the program from the flash drive to the internal emulation engine. 
The approach eliminates the need for non-volatile memory in the 
development platform. The approach enables loading and 
changing circuits by inserting and swapping flash drives, 
enabling more mobility and portability. The approach also 
matches current usage schemes for popular electronic devices, 
allowing a beginning student to start programming with minimal 
effort, and using a familiar paradigm. The cost is that the 
SystemC-on-a-Chip platform must contain an internal USB flash 
drive reader.    

Figure 4: USB interface. The user copies SystemC bytecode to a 
USB flash drive, plugs the drive into a platform and pushes a 

button—the platform then begins emulating the SystemC 
description. 
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3.4 Emulation Engine 
The basic emulation engine supports SystemC bytecode written 
or generated for the synthesizable subset of SystemC.  We 
currently do not support higher level features of SystemC like 
transaction level and system level modeling because we are 
presently targeting SystemC descriptions that could eventually 
run natively on an FPGA. Figure 5(a) shows the architecture of 
the basic emulation engine.  

The basic emulation is driven by a processing core that runs 
a lean, event-driven simulation kernel [9]. Figure 5(b) shows the 
pseudocode for the event-driven kernel. For each time step, the 
event-driven kernel processes a queue of ready-to-run events. An 
event is placed on the queue when a signal value is updated and 
that signal is on the sensitivity list of a process. Each time step 
might consist of multiple delta time steps, in which a process 
may execute multiple times during a time step. After each delta 
step, the event kernel updates the signal values, and places any 
new sensitive processes onto the event queue. The signals values 
are located on the system bus in Signal Memory 1 and Signal 
Memory 2. Processes and peripherals write to Signal Memory 1, 
and read from Signal Memory 2. After each delta step, the event 
kernel copies the contents of Signal Memory 1 to Signal Memory 
2. The advantage of putting the signal memories on the bus is 
that peripherals have easy access to the signal values, and gives 
access to emulation accelerators. The disadvantage is that 
multiple peripherals might try to access the signal memories at 
the same time as the event kernel, blocking the bus, and 
degrading emulation efficiency.  

The event-driven kernel calls a bytecode virtual machine to 
execute each event in the event queue. The bytecode virtual 
machine supports the SystemC bytecode instruction set described 
in Section 3.2. Each process is allocated an instruction memory, 
register file, and local data memory. The virtual machine also 

contains proper hooks to communicate with the standard 
peripheral and I/O set. We designed the bytecode virtual machine 
using standard techniques from [24] to increase the efficiency of 
execution.  

The emulation engine supports platform I/O and peripheral 
access. The set of peripherals includes buttons, LEDs, UART, 
and input and output memories. We chose the peripherals to be a 
representative subset of peripherals that most development 
platforms could support. For development platforms with a larger 
set of peripherals, emulation designers could easily add extra 
support. The basic emulation engine supports SystemC 
descriptions that implement the interface shown in Figure 6. The 
description writer does not have to follow the standard interface, 
but the standard interface provides a convenient mapping 
between description’s signals and the available peripherals.  

3.5 Emulation Engine Accelerators  
For the common situation where the SystemC-on-a-Chip 
platform is implemented on an FPGA, we’ve developed 

Figure 5: Basic Emulation Engine. The emulation engine consists of a hybrid event/time driven kernel to allow a variety of different 
circuits to be implemented. Circuits can also take advantage of a range of standard peripherals, including lights, buttons, a UART, and 

input and output memories.  

 

 

Figure 6: SystemC-on-a-Chip Circuit Interface. The emulation 
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LEDs, and memory. 
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emulation accelerators that substantially increase the SystemC 
emulation speed. Figure 7(a) shows multiple emulation 
accelerators connected to the basic emulation engine. Each 
emulation accelerator runs in parallel to the other emulation 
accelerators and the main emulation processor. Figure 7(b) 
shows the internals of one of the emulation accelerators. The 
emulation accelerator consists of a small SystemC bytecode 
processor and bus steering logic. The bytecode processor is a 
modified multi-cycle MIPS datapath, with connections to a 
register file and local data memory. The emulation accelerator 
can complete most instructions in 3-4 cycles, with the exception 
of the READ instruction, which has a nondeterministic execution 
time since the accelerator must read data from the system bus. 
The emulation accelerator is configured as a master on the 
system bus to allow the accelerator to read and write the 
emulation engine’s signal memories independent from the 
emulation processor, and as a slave to allow the emulation 
processor to command the start of its execution.  

The emulation accelerators are statically mapped to execute 
one process during the course of a SystemC description 
execution. The emulation processor maps processes to emulation 
accelerators using a simple instruction-size priority scheme. The 
advantage of the static priority approach is the emulation 
software is kept simple and doesn’t need to stop execution to 
reconfigure the emulation accelerators. The disadvantage is there 
may be situations where dynamically swapping out processes 
onto the emulation accelerators might result in faster emulation 
execution times. Also, since the size of the emulation 
accelerator’s instruction and data memories are fixed, the main 
scheduling/mapping heuristic accounts for the limited memory 
sizes by only mapping processes to accelerators that are 
guaranteed to fit. The main event-driven kernel is modified to 
either simulate a process in software, or to make the 
corresponding call to the correct emulation accelerator.      

The number of emulation accelerators can substantially 
increase the performance of the SystemC emulation since each 

emulation accelerator runs in parallel. The emulation accelerators 
do contend for the signal memories, but typical SystemC 
behavioral descriptions only read/write signals at the start and 
end of their descriptions. The advantages of emulation 
accelerators increase as the size of the SystemC processes 
increase since the emulation accelerator can execute bytecode 
instructions orders of magnitude faster than the basic emulation 
engine can. There are tradeoffs though. Assuming circuit 
emulation doesn’t require fast execution, the FPGA area required 
to implement emulation accelerators could be allocated for other 
circuitry, including more advanced peripherals or I/O. Also, 
smaller process descriptions may not benefit much from 
emulation acceleration, or other SystemC execution times might 
be perfectly acceptable in without acceleration 

4. Experiments 
We built two complete SystemC-on-a-Chip platforms, and 
implemented dozens of SystemC descriptions to demonstrate the 
applicability of in-system SystemC emulation. The systems we 

Figure 7: Emulation Accelerators.  The emulation accelerator consists of a multicycle MIPs-like datapath than can execute one instruction 
in about 3-4 cycles, almost 100X faster than executing the same instructions in the base emulator. 
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built are summarized in Figure 8. One platform used the Virtex4 
Ml403 FPGA development board, and the other used a Spartan 
3E FPGA development board. On the Virtex4 ML403 FPGA, we 
built the emulation engine on a PowerPC processor and used the 
PLB bus framework to access I/O and peripherals. On the 
Spartan 3E FPGA, we built the emulation engine on a 
Microblaze soft-core processor, using the OPB bus framework to 
access peripherals and I/O. The instruction memory, stack, and 
heap for the PowerPC based basic emulation engine were all 
stored in SRAM. In contrast, the instruction memory, stack, and 
heap for the Microblaze-based system were all located in on-chip 
BRAM. Due to limited BRAM resources, some SystemC 
descriptions would not run on the Microblaze-based platform. 
No SRAM existed on the Spartan 3E platform. The Virtex4 
platform could support two emulation accelerators, and the 
Spartan 3E platform could support one emulation accelerator. 
The emulation accelerators required about 30% of the logic 
resources on each FPGA.  The Spartan 3E only fit one 
accelerator because the rest of the FPGA resources were used to 
build the Microblaze softcore processor. The Virtex4 has a 
hardcore PowerPC, allowing more room for emulation 
accelerators. We built both systems using Xilinx EDK 9.2 and 
Xilinx ISE 9.2.  For most descriptions we tested, both SystemC-
on-a-Chip platforms systems could support the same SystemC 
circuit without altering the SystemC source code.  

We implemented a number of different circuits in SystemC, 
including an edge detector, encryption/decryption applications, 
various state machines, and several smaller combinational logic 
components to exercise the entire SystemC bytecode set. Figure 
9(a) shows a snippet of the SystemC source code for the edge 
detection circuit. The edge detection circuit was written with two 
processes, one process to gather pixel data from the input 
memory, and one process to perform the edge detection and 
output to the output memory. We configured each platform to 
use the output memory as a frame buffer, allowing visual 

inspection of the output on a VGA screen (Figure 9(b)). The 
edge detection circuit could process a 128x128 image in 
approximately 30 seconds on the base emulation engine (without 
acceleration support). While slow, in an early prototyping 
scenario, or in a classroom setting, such times might be 
acceptable. The edge detection circuit completed the same image 
in about 0.3 seconds when one emulation accelerator was 
connected. The basic emulation engine requires hundreds of 
cycles to execute one bytecode instruction because of a slow bus 
platform, instruction memory placement, and bytecode virtual 
machine abstraction. The emulation accelerator requires only a 
few clock cycles per instruction, resulting in several of orders of 
magnitude speedup. We also compared the edge detection circuit 
running on the SystemC-on-a-Chip platforms to the same 
SystemC circuit description running on an Intel-based PC 
running at 2 GHz. The SystemC edge detection circuit took 0.5 
seconds to complete the same 128x128 image. The SystemC-on-
a-Chip platform emulated the SystemC circuit faster than the PC 
simulated the SystemC description because the accelerator 
executed each bytecode instruction in only a few cycles. In 
contrast, the PC SystemC simulation requires tens of cycles to 
execute an instruction because the PC simulation runs through a 
more complex, templated, event-driven kernel that supports 
SystemC’s more advanced modeling features.  

Figure 10 compares a variety of SystemC descriptions on a 
base SystemC-on-a-Chip platform, on a base platform with 
emulation acceleration, and PC simulation. The figure shows 
results compared to the Virtex4 Ml403 development platform. 
The results for the Spartan 3E platform were comparable. On the 
Spartan 3E development platform, the Microblaze system clock 
was half the speed of the PowerPC on the Virtex4, but fetched 
memory more efficiently since the Microblaze had a dedicated 
bus to the BRAM instruction memory. The results show that 
SystemC-on-a-Chip execution can be comparable to SystemC 
simulation on a PC. Of course, the execution times are 

Figure 9: SystemC Experiments. (a) SystemC code for Image Edge Detection. The code took only minutes to create and compile before 
being put on a Virtex4. (b) Edge Detection running on a Virtex4.  We connected the memory output to a frame buffer to see the results on 

a VGA screen. 

 

 

class EDGE_DETECTOR : public sc_module { 
//signal declarations 
… 
EDGE_DETECTOR() { 
   SC_method(mainComp); 
   sensitive << dataReady; 
 
   SC_method(getPixel); 
   sensitive << clock.pos(); 
 
void getPixel(){ 
   … 
   dataReady.write(1); 
} 
 
void mainComp(){ 
    int i, j; 
    for(i = 0; i < 3; i++){ 
        for(j = 0; j < 3; j++){ 
    sumX = sumX +   mem.read()*GX[i][j] 
        } 
     } 
     … 

Before After SystemC Snippet 
  

(a) (b) 
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comparable only until the number of emulation accelerators are 
exhausted. Also, the PC can simulate combinational logic more 
efficiently than in-system SystemC emulation because the PC 
event kernel can skip large sections of simulated time, although 
skipping large amounts of time is dependent on the test bench 
specification. The SystemC-on-a-Chip platform does not skip 
time steps, instead relying on peripheral interaction for testing. In 
many cases though, especially during early testing scenarios, 
high performance isn’t critical and functional interaction with 
real peripherals and I/O is more important.  In all cases, the basic 
emulation engine executed the SystemC descriptions ~100X 
slower than the emulation engine with acceleration or the 
SystemC PC simulation. The basic emulation engine has the 
advantage that many smaller development platforms could still 
support its software, enabling in-system SystemC emulation for 
less capable systems, or for systems without FPGA resources. 

5. Conclusions 
SystemC allows description of a digital system using traditional 
programming features as well as spatial connectivity features 
common in hardware description languages. We described an 
approach for in-system emulation of SystemC descriptions. The 
approach centers around a new SystemC bytecode format that 
executes on an emulation engine running on a microprocessor 
and/or FPGA on a development board.  We described a full 
SystemC-on-a-chip framework that includes a SystemC bytecode 
compiler, the SystemC bytecode format, emulation engine, and 
emulation accelerators.  We showed that a number of examples 
could be written once in SystemC, and then run unaltered on 
several prototype platforms from a USB flash drive, with 
execution times comparable to SystemC execution on a PC.  
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