Dynamic Acceleration Management for SystemC

Emulation

Scott Sirowy, Chen Huang, and Frank Vahid *
Dept. of Computer Science and Engineering

University of California, Riverside
{ssirowy,chuang,vahid}@cs.ucr.edu

"Also with the Center for Embedded Computer Systems, University of California, Irvine

ABSTRACT

Field-programmable gates arrays (FPGAs) have ricdrgen
used to emulate SystemC descriptions. EmulatiorBysdtemC
descriptions allows for in-system testing, and basn shown to
compare favorably with SystemC simulations on a Wien
acceleration enginesre employed. A limit on the number of
acceleration engines that can fit on a SystemC a&toul platform
creates new dynamic management problems involvegsibns
as to when and which acceleration engines to lodu S8ystemC

bytecode We define an acceleration management problem for

SystemC emulation platforms. In contrast to presiaworks that
focus on statically improving SystemC (and the mgemeral
event-driven)simulations we utilize dynamic online algorithms
to manage the use of a limited number of Systent@laation

engines in aremulationframework, where the kernel must adapt

and react to a dynamically changing event queuetéseseveral
online heuristics, and show that we can achieve itdpfovement
over software-only emulation and 3.8X over staljcpteloading
SystemC acceleration engines.

1. INTRODUCTION

SystemC descriptions can be executed in one ofaleways. One
common way is tosimulate SystemC descriptions on a PC.
Simulation allows for testing SystemC descriptiavithout costly
or unattainable physical equipment. A few key dragis are that
simulating SystemC models might be slow and inateyrand
creating fabricated 1/0 can be difficult and tim@suming, while

still not matching the complexity and nuances @fl i¢0. Some
SystemC descriptions can evendyathesizedo an ASIC, FPGA,
or board-level customized implementation. Syntresi8ystemC
descriptions benefit from interacting with physidaputs and
outputs with very high performance. However, Sy&esgnthesis
tools can be expensive (compared to compilers), omdy run on
limited PC platforms and be challenging to instabpecially on
lower-end PCs), may be unpredictable with respectitcuit
size/speed or tool runtime, often require long imas (such as
hours or days), may not support particular targeviaks or
platforms, and can only synthesize the parts ofcibee written
for synthesis. An alternative to SystemC simulaon SystemC
synthesis is in-system Systene@ulation Though slower than a
custom implementation, emulation enables earlygbtyptng, and
benefits from real I/O rather than fabricated IfGsimulation.

For the common situation where the emulation engme
implemented on (or with access to) an FPGA, FPGgebla
acceleration engines can substantially increase etin@lation
speed, enabling SystemC execution speeds compacaivigldle-
to-high-end PCs. A System@cceleration engineshown in

Figure 1(b),consists of a MIPs-like data path that executes the

same intermediate form of SystemC cal®aétemC bytecoda9]
the base emulator executes, albeit orders of maimiiaster.

One potential drawback of in-system SystemC enarats
that the ordering of events on the event queueotsknown at
runtime, making some existing static accelerat@shhiques like
queue reordering and process splitting less effeclihe SystemC
emulation framework allows for a dynamic decisiorotcur as to

Figure 1: (a) Emulating an image processing filtering systein). An Acceleration Enginean execute SystemC bytecode almost two orders of
magnitude faster than the base SystemC emula)oRynamically adapting which processes get acatdd in a SystemC emulation results in
better execution times than pure software emulaimhaccelerating every process because of comatioricand acceleration loading costs.

- -

RISC

(@ |FPGA - (b) TSel
SystemC L7 RN
Event Queue _| Emulator % s
|edge edgg blur |b|ur |edge ’) ‘ \\
.. \
Online decisiorr . _ Acceleration Engine K
/
1) Accelerateedge?’ I \\
,/ 2)Yes
1

\
Bus, \
Process #uses Acce, Datapath :
- = —— = = 7]
Edge { 8 y © ° Emulate every process in softv\vaﬂ ,'
~Z___- \
Emboss 4 n E Accelerate every process N 4 ,'
\ l
Mean 3 n = \ Y
2 \ ’
Blur 5 y 3 More Communicatio N)
Radial 2 n g and reloading overhead \ 4
i AR)i
History Table 8 Dynamically manac hNY R
2 cceleratol Seo T

-

whether to execute the SystemC bytecode on thewaeft
emulator, or load and execute that bytecode ontacaeleration
engine. But, acceleration engines are limited, dodding
acceleration engines involves time overhead, sd lbecisions
should minimize total execution time, as illustchbe Figure 1(c).

Thus, a new problem exists as to how to efficientliize the
finite number of SystemC acceleration engines tovice a
dynamically changing, event-driven SystemC emutat@vent
gueue such that the emulation time is minimized. dgéne the
SystemC Acceleration Engine Managemprablem, and apply
online heuristics to dynamically improve the pemfance of
SystemC emulation.

Section 2 goes over related work. Section 3 defithes
problem. Section 4 describes several dynamic h@gisSection
5 details several experiments, and Section 6 cdeslu

2. RELATED WORK

Improving the performance of event-driven simulatidias been
extensively researched. Much research has conteshtran

developing parallel frameworks for general evenmvelr

simulation. Fujimoto [6] presents a comprehensivevey of

several parallel simulation techniques. Jeffefdd&j) analyzes the
critical paths of event-driven simulations, and cdisses
techniques to achieve supercritical speedups imlation. Das
[5] discusses adaptive protocols for parallel satiahs.

Other work has focused on specifically improvingstsynC
simulations. Naguib [16] automatically splits Syst@ processes
to prevent unnecessary wake up calls to the Systra@t kernel.
Perez [18] creates an optimized implementationhef $ystemC
kernel that utilizes acyclic scheduling. Wang [2@s compiled
simulation to eliminate unnecessary evaluations, @nimprove
simulation time. Our work focuses on dynamic Sy€iem
emulations (compared to static SystemC simulationg)ose
behavior require dynamic scheduling techniquesetéebimprove
performance.

Dynamic system optimizations have also been thesfauf
much research. Balarin [1] presents a survey of-tiese
embedded system scheduling, which classifies todl@m into
static scheduling and dynamic scheduling. Huang atiid
[12][13] develop new online algorithms for managif@® GA
coprocessors in a dynamic environment. Noguera pt@posed
dynamic run-time hardware/software scheduling tegpes for
FPGAs emphasizing dynamic concurrent task scheglul®ur
work applies these dynamic techniques improve #mopmance
of SystemC emulation.

3. PROBLEM DEFINITION

3.1 Communication Overhead

The SystemC accelerators communicate with the basdator
through memory mapped registers and signal memavtgsh
store the current and next values of each signahénSystemC
description. We use queuing theory to estimateameememory
access delay, and model memory contention by thd/Mfueue.
The processes in the base emulator and in the rBgste
acceleration engines generate memory access reqtiesugh

READandWRITEbytecode instructions. We define the following:
. Random memory access rate: The random memory acces

rate is the number of times a procéssads from memory,
whereli is the memory access rate of running process

. Bus service rateu. The bus service rate is the number of
requests the system bus can process in a secogd. E.

Assuming a 100Mhz memory bus, one access takes 20
cycles, squ=5M/s.

. Average delay: # of cycles for one memory access.
According to queuing theory, average delay for aneess
is D=A/(u(u-4)). System delaydelay = Di.

3.2 Problem Definition

We define the SystemC Acceleration Engine Managémen
problem as follows. Given are:

« A process setP= {pl, p2, p3, ..pn}containing then

processes that comprise a given SystemC description

e A set of execution timesTp={tpl, tp2, tp3,..., tpn}
containing the execution time of each prodessnning on
the SystemC base emulator w/o communication ovdrhea

« A set of execution time¥c={tcl, tc2, tc3,...,tcnJor each
process when running on a SystemC acceleration engine
without communication overhead.

¢ A set of sizesS={s1 ,s2, s3,..., smjiving the size of each
process in terms of number of bytecode instructions..

e The total number of acceleration enginA&, in the
SystemC emulation framework.

e The time to load one instruction into a SystemC
acceleration engineTR. The total time to load an
acceleration engine with procdssan be thus be written as
the following: loading time(i))=TR*si

The SystemC Acceleration Engine Management prolbheist
satisfy the following constraints:

¢ Processes running on the SystemC base emulatarati
acceleration engines may run in parallel, unleas pinocess
is the same processFor instance, in the sequenge?s pl,
pl, pl, p3>,the three instances gbl must execute
sequentially, bup2 and the firspl1 can run in parallel.

e The base emulator cannot be interrupted to runoaess
when it is loading a process onto an acceleratiagine or
when it is itself emulating a process.

The dynamic input to the problem is an event qu@usuch
as<p2, pl, p4, p2, pl, pl....that lists and orders the process
instances that run on the platform for a given tatep.

The SystemC Acceleration Engine Management (AEM)
problem for time is defined as an online problenor Feach
process in the event queue, using only knowledgpriof and
current processes in the queue, determine whether to toaid
process into a SystemC acceleration engine, swtttithe for the
entireevent queue (including future instances of thegss in the
queue) is minimized. When a process is alreadgiddanto a
SystemC acceleration engine, we refer to the psoessbeing
Acceleration Engine Residerfthecurrent processs the process
that at a given time is to be executed next andwbich the
acceleration engine load determination must be mabes, the
solution to the AEM problem consists of an accéleraengine
management decision for each process instance d@netkent
queue. Each decision is either: load, don't loadjleeady loaded.
For a decision to load, the decision also listsagss that must
be unloaded to make room for the new process Beaued.

4. HEURISTICS

2.1 Upper and Lower Bounds

An upper bound on total execution time can be detexd by
running every process on the base emulator. A Idweemnd can
be determined by assuming every process is prefoadéeo an
infinite set of existing SystemC acceleration eegirand ignoring

all communication overhead, referred to affinite
Accelerators/No Comm Another interesting comparison is
running process on an acceleration engine, assuinifigjte
acceleration engines, but in this case considezdrgmunication
overhead, referred to as thifinite Accelerators Infinite
Acceleratorgives a tighter bound

4.2 Accelerator Static Assignment

To see the advantage of dynamically loading bytecta the
SystemC acceleration engines for higher performamaelation,
we compare to atatically preloadedapproach, which assumes
the SystemC acceleration engines are initially éohgvith one
process’s bytecode each, and are not reloadedgduittime. At
the beginning of SystemC emulation, the emulatsigas each
acceleration engine a process to always execute ai@ instance
arrives on the event queue. The acceleration esgine loaded
with the processes that have the largest speedeptd (Tp-Tc)
Compared to dynamic techniques, the benefits titstacelerator
assignment are one-time acceleration engine loadamgl a
simpler emulation event kernel. The drawbacks &a there
might only be a few acceleration engines, and mmie rest of
the SystemC processes on the base software emolattd be
computationally expensive.

4.3 Greedy Heuristic

A greedy heuristic can be defined that always |dodscurrent
process into a SystemC acceleration engine befeeuéing. If
the process iscceleration engine residenthe emulation kernel
just instructs the SystemC acceleration engineetfirbexecuting.
Otherwise, the emulation kernel randomly chooses ide
SystemC acceleration engine to load the procesgtectde
instructions. In the case that all the SystemC lacagon engines
are busy running, the emulation kernel will waitilthe one of
the acceleration engines becomes idle. The timepledity of the
greedy heuristic i©(1). However, the greedy heuristic may incur
lots of loading overhead since it loads a Systern€elaration
engine with bytecode on every execution. Furthbe greedy
algorithm attempts to use all the available acegien engines,
which increases the amount of communicate overfwadhe
system bus.

4.4 Aggregate Gain Algorithm

We use the Aggregate Gain (AG) algorithm introduteflL3] to

address the SystemC AEM problem. The AG algoritteesuthe
history of application executions to attempt to dice future

executions and hence to predict when reconfiguradicerhead is
worthwhile. The AG algorithm considers the recoufaion and
communication overhead. The basic idea of AG ist thve

maintain an aggregate gain table for each progggsrunning in
the system. We define the gain as the time saveditnying the
process instance with the accelerator. The AG tgbte updated
when new process arrives. The AG table shows whiolcesses
make most of the gains by running in the System¢zlacation
engine.

The process instance sequences often exhibit tednpor
locality—recently-executed processes are moreikelexecute
in the near future than are processes from long Agéading
factorf is introduced to refresh the AG tabfes adaptive to the
average loading time.

The intuition of the loading, replacement and vetision is
to make the total gain of the acceleration engiesident

processes high. Thus the load, replace and waisidas will be
made only if the decision would not decrease thil tgain
resident processes.

5. EXPERIMENTS

5.1 Framework

We developed a simulator in C++ to test our heiggstand
applied the simulator to several SystemC descriptioWe
implemented two SystemC emulation platforms, oneaoXilinx
Virtexd MI403 development board, and one on a Xilin
Virtex2Pro development board. We implemented bdtthe base
software emulators on the PowerPC processors rgn@in
100MHz. The base emulators communicate to the eatein
engines and the rest of the peripherals througtPtt® bus. The
base emulator uses a handshaking protocol ovePliBebus to
communicate and load instructions into each ofabeeleration
engines. The total time to load one instructidfR) onto an
acceleration engine is approximately three microsds. The
Virtex4 MI403 development platform could hold oreeeleration
engine, and the Virtex2Pro development platform leolold
three. The base software emulator was written jpr@pmately
2000 lines of C code.

We applied our algorithms to an image filteringteys which
included a blur filter, an emboss filter, a motidter, and several
implementations of edge detection. We wrote théerl in
SystemC and each filter was captured using mulfipteesses.
We modeled several dynamic scenarios in which rirege filters
be used. We describe one scenaricRasadom in which image
filters are placed on the event queue randomly.tieroscenario
is theBiasedcase, in which a small number of filters appear
the event queue most of the time. The last Fer0dic scenario
in which a random subsequence of the filters repeatefinitely
on the event queue.

Each sequence’s length was 500. For all experimbetsaiuse
sequences involve some random ordering, we gewerate
sequences, and report the arithmetic average. fer work,
execution time data does not include the time tothe heuristics
themselves. The heuristic runtimes were negligibtiding only
microseconds to each process execution.

on

5.2 Evaluation

Figure 2(a) shows total execution times of a soiteSystemC
image processing descriptions running on a Virté403
implementation of the SystemC emulation framewofihe
statically preloaded accelerator approach yieldedbX speedup
compared to software-only emulation. The dynamipraeach
(greedy or AG yield more speedup. The execution time obtained
by AG is 4.3X and 1.2X faster thastatically preloadedand
greedy solutionsrespectively.AG yields 7X speedup versus a
software-only emulation.

Figure 2(b) shows similar results for the same imag
processing suite running on a Virtex2Pro SystemQilation
framework. Thestatically preloadedaccelerator approach yielded
4.3X speedup compared to software-only emulatiome T
statically preloaded speedup compared to the Virtex4
implementation is slightly under the 3X improvemente
expected to see from increasing the number of acelrs from
one to three. The penalty comes from increased corimation
costs and reloading costs on the system bus. Téeutan time
obtained byAG is 3.2X and 1.3X faster thastatically preloaded
andgreedysolutions, respectivelfAG yields 14X speedup versus

Figure 2: SystemC Acceleration Management Experiments.nfapé Filtering System running on a base emulata dittex4 MI403 that can
fit one acceleration engine. (b) Same image filigsystem running on a base emulator on a Virtex®®at can fit three acceleration engines.
With three accelerators, emulation runs 14X fattan software-only emulation, and in both cases A6 algorithm performed 1.2X better
than a greedy approach and 3.8X better than dtgtiraloading the accelerators.

(a) Virtex 4 M1403: 1 Accelerator

651 389 622 428

617

397

g

g

8

3

Total Execution Tine (ns)

o

Random (ns) B ased (ns) Periodic (ns)

. Base emulatorm Inf. Accel/nc D Infinite

communicatio Accelerator

a microprocessor only solution. The Virtex2Pro eatioh
framework yielded on average 2X speedup comparedhéo
Virtex4 MI403 implementation. The greedy algorithrsuffered
on both platforms because of the high cost to celdlae
acceleration engines with new bytecode instructiofise AG
algorithm takes the accelerator reloading cost sxtoount and
thus decided not to reload the accelerators ewery there was a
new process on the event queue.

Comparing with thenfinite Acceleratorslower bound (i.e.,
all processes are accelerated and without the teeedload the
bytecode instructions onto the accelerator) shdves the AG
algorithm obtains execution times on average wisBX slower
on a platform with one accelerator because of figh fbading
time, and 3X slower on a platform with three aceers of this
lower bound. Thelnfinite Accelerators suffers from much
communication overhead, #d5 shows less relative slowdown.

Comparing the different application scenarios, bGiteedy
and AG perform better in Biased scenario. Becaussmall
number of applications appear most of the time, rthmber of
reconfiguration is less in Biased scenario compamandom and
periodic scenario, result in less total executioret

6. CONCLUSIONS

SystemC emulation platforms benefits from adapting dynamic
event queue. We defined the SystemC Acceleratiogingén
Management problem and applied a several onlingidi®s to
improve SystemC emulation performance by 14X owveulating
all of the SystemC on a base software emulationéteand 3.8X
over statically preloading the acceleration engin&s our
knowledge, this is the first work to use dynamicht@iques to
manage acceleration and improve SystemC emulation.

7. ACKNOWLEDGEMENTS

This work was supported in part by the National eBce
Foundation (CNS-0614957) and the Office of Navakdech
(N00014-07-C-0311).

REFERENCES

[1] BALARIN, F. , LAVAGNO, L., AND MURTHY P. Scheduling for

(a) Virtex2Pro: 3 Accelerators

P 617 651 622
€ 200
€ 150
=
c
2 100
5
(8]
(]
g 50
©
E 0
Random (ns) B ased (ns) Periodic (ns)
Statically Greedy AG
D Preloade . E

[4] BoroDIN, A., LINIAL, N., AND Saks, M.E. An optimal on-line
algorithm for metrical task system. Journal of théM (JACM),

Volume 39, Issue 4 (Oct. 1992), pp. 745 — 763.

Das, S. R. 1996. Adaptive protocols for parallel discreteerg
simulation. In Proceedings of the 28th Conference on Winter
Simulation

(5]

[6] FuiamoTo, R. M. 1989. Parallel discrete event simulation. In
Proceedings of the 21st Conference on Winter SitiounleE. A.

MacNair, K. J. Musselman, and P. Heidelberger, BdSC '89.

FUJIWARA, H., AND IwAMA K.. Average-Case Competitive Analyses
for Ski-Rental Problems. ISAAC 2002.

GROSS D., AND HARRIS, C.M. Fundamentals of queueing theory.
John Wiley & Sons, Inc. New York, NY, USA. 1985

HAauck, S. Configuration prefetch for single context redgafable
coprocessors. Proceedings of the 1998 ACM/SIGDAthsix
international symposium on Field programmable gatays, 1998.

[10] HAUSER, J.R, AND WAWRZYNEK, J. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. IEEE Symposium on FPG#s
Custom Computing Machines, 1997.

[11] HorTA, E.L, Lockwoob, J.W, TAYLOR, D.E, AND PARLOUR, D.
Dynamic Hardware Plugins in an FPGA with PartialnRime
Reconfiguration. Design Automation Conference (DAZD)02.

(7]
(8]
(9]

[12] HuaNg, C., AND VAHID, F. Dynamic Coprocessor Management for
FPGA-Enhanced Compute Platforms. IEEE/ACM Int. Coah
Compilers, Architectures, and Synthesis for Embdd&ystems
(CASES), Oct 2008.

[13] HuaNG, C. AND VAHID, F. Dynamic Transmuting Coprocessors.
IEEE/ACM Design Automation Conference. DAC. July020

[14] I1saacs D., TREXEL, E., AND KARSTEN, B. Accelerate System
Performance with hybrid multiprocessing and FPGEmbedded
Systems Design, 8/15/2007.

[15] JEFFERSON D. AND REIHER, P. 1991. Supercritical speedup. In
Proceedings of the 24th Annual Symposium on Simoal#@nnual
Simulation Symposium. IEEE 159-168

[16] NAaGuiB, Y. N. AND GUINDI, R. S. 2007. Speeding up SystemC
simulation through process splitting. IRProceedings of the
Conference on Design, Automation and Test in Europe

[17] NOGUERA J.,BADIA, R.M. Dynamic run-time HW/SW scheduling
techniques for reconfigurable architectures. CODESS, 2002.

[18] PEREZ, D. G., MOUCHARD, G., AND TEMAM, O. 2004. A New
Optimized Implemention of the SystemC Engine Usihgyclic
Scheduling. In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1

Embedded Real-Time Systems. IEEE Design and Test of [19] Srowy, S., MILLER, B. AND VAHID, F. Portable SystemC-on-a-

Computers, 1998.

BARTAL, Y., BLUM, A., BURCH, C., AND TOMKINS, A. A polylog(n)-
competitive algorithm for metrical task systems. MCGSymp. on
Theory of Computing, 1997, pp. 711-719.

BENITEZ, D. Performance of remote FPGA-based coprocessors fo
image-processing applications. Digital System Des02.

(2]

(3]

Chip. UCR-CSE-TR-052709. Technical Report. ApriD20

[20] wWaNG, Z. AND MAURER, P. M. 1990. LECSIM: a levelized event
driven compiled logic simulation. IfProceedings of the 27th
ACM/IEEE Design Automation Conferend®rlando, Florida,
United States, June 24 - 27, 1990). DAC90

